题目内容
8.(1)求证:△BDQ≌△ADP;
(2)已知AD=3,AP=2,求PQ.
分析 (1)由四边形ABCD是菱形,可得AD=AB,∠ABD=∠CBD=$\frac{1}{2}$∠ABC,AD∥BC,又由∠A=60°,易得△ABD是等边三角形,然后由SAS即可得△BDQ≌△ADP;
(2)首先过点Q作QE⊥AB,交AB的延长线于E,然后由三角函数的性质,即可求得PE与QE的长,又由勾股定理,即可求得PQ的长.
解答 (1)证明:∵四边形ABCD是菱形,
∴AD=AB,∠ABD=∠CBD=$\frac{1}{2}$∠ABC,AD∥BC,
∵∠A=60°,
∴△ABD是等边三角形,∠ABC=120°,
∴AD=BD,∠CBD=∠A=60°,
∵AP=BQ,
∴△BDQ≌△ADP(SAS);
(2)解:过点Q作QE⊥AB,交AB的延长线于E,![]()
∵BQ=AP=2,
∵AD∥BC,
∴∠QBE=60°,
∴QE=QB•sin60°=2×$\frac{\sqrt{3}}{2}$=$\sqrt{3}$,BE=QB•cos60°=2×$\frac{1}{2}$=1,
∵AB=AD=3,
∴PB=AB-AP=3-2=1,
∴PE=PB+BE=2,
∴在Rt△PQE中,PQ=$\sqrt{P{E}^{2}+Q{E}^{2}}$=$\sqrt{7}$.
点评 此题考查了菱形的性质与勾股定理、三角函数的性质.此题难度适中,解题的关键是数形结合思想的应用.
练习册系列答案
相关题目
18.
如图所示,在?ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则$\frac{{S}_{△DEF}}{{S}_{四边形FEOC}}$=( )
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{5}$ |
16.点P是半径为5的⊙O内一点,且OP=4,在过点P的所有弦中,长度为整数的弦共有( )
| A. | 5条 | B. | 6条 | C. | 7条 | D. | 8条 |