ÌâÄ¿ÄÚÈÝ

Èçͼ1£¬Å×ÎïÏßy=ax2+bx+6£¨a¡Ù0£©ÓëxÖá½»ÓÚµãA£¨2£¬0£©ºÍµãB£¨-6£¬0£©£¬ÓëyÖá½»ÓÚµãC£®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©ÉèÅ×ÎïÏߵĶԳÆÖáÓëxÖá½»ÓÚµãM£¬ÔÚ¶Ô³ÆÖáÉÏ´æÔÚµãP£¬Ê¹¡÷CMPΪµÈÑüÈý½ÇÐΣ¬ÇëÖ±½Óд³öËùÓзûºÏÌõ¼þµÄµãPµÄ×ø±ê£»
£¨3£©ÉèµãQÊÇÅ×ÎïÏß¶Ô³ÆÖáÉϵÄÒ»¸ö¶¯µã£¬µ±µãQÂú×ã|QB-QC|×î´óʱ£¬Çó³öQµãµÄ×ø±ê£»
£¨4£©Èçͼ2£¬ÈôµãEΪµÚ¶þÏóÏÞÅ×ÎïÏßÉÏÒ»¶¯µã£¬Á¬½ÓBE¡¢CE£¬ÇóËıßÐÎBOCEµÄÃæ»ýµÄ×î´óÖµ£¬²¢Çó´ËʱEµãµÄ×ø±ê£®
¿¼µã£º¶þ´Îº¯Êý×ÛºÏÌâ
רÌ⣺
·ÖÎö£º£¨1£©½«µãA£¨2£¬0£©ºÍµãB£¨-6£¬0£©·Ö±ð´úÈëy=ax2+bx+6£¬µÃµ½¹ØÓÚa¡¢bµÄ¶þÔªÒ»´Î·½³Ì×飬½â·½³Ì×éÇó³öa¡¢bµÄÖµ£¬½ø¶øµÃµ½Å×ÎïÏߵĽâÎöʽ£»
£¨2£©¸ù¾Ý£¨1£©µÄº¯Êý½âÎöʽµÃ³öÅ×ÎïÏߵĶԳÆÖáΪx=-2£¬ÔÙÇó³öMµãµÄ×ø±ê£¬ÓÉÓÚCÊÇÅ×ÎïÏßÓëyÖáµÄ½»µã£¬Òò´ËCµÄ×ø±êΪ£¨0£¬6£©£¬¸ù¾ÝM¡¢CµÄ×ø±êÇó³öCMµÄ¾àÀ룮Ȼºó·ÖÈýÖÖÇé¿ö½øÐÐÌÖÂÛ£º¢ÙCP=PM£»¢ÚCM=MP£»¢ÛCM=CP£»
£¨3£©ÓÉÅ×ÎïÏߵĶԳÆÐÔ¿ÉÖªQB=QA£¬¹Êµ±Q¡¢C¡¢AÈýµã¹²Ïßʱ£¬|QB-QC|×î´ó£¬Á¬½áAC²¢ÑÓ³¤£¬½»¶Ô³ÆÖáÓÚµãQ£¬ÀûÓôý¶¨ÏµÊý·¨Çó³öÖ±ÏßACµÄ½âÎöʽ£¬ÔÙ½«x=-2´úÈ룬Çó³öyµÄÖµ£¬½ø¶øµÃµ½QµãµÄ×ø±ê£»
£¨4£©ÓÉÓÚËıßÐÎBOCE²»ÊǹæÔòµÄËıßÐΣ¬Òò´Ë¿É½«ËıßÐÎBOCE·Ö¸î³É¹æÔòµÄͼÐνøÐмÆË㣬¹ýE×÷EF¡ÍxÖáÓÚF£¬ËıßÐÎBOCEµÄÃæ»ý=Èý½ÇÐÎBFEµÄÃæ»ý+Ö±½ÇÌÝÐÎFOCEµÄÃæ»ý£®Ö±½ÇÌÝÐÎFOCEÖУ¬FOΪEµÄºá×ø±êµÄ¾ø¶ÔÖµ£¬EFΪEµÄ×Ý×ø±ê£¬ÒÑÖªCµÄ×Ý×ø±ê£¬¾ÍÖªµÀÁËOCµÄ³¤£®ÔÚÈý½ÇÐÎBFEÖУ¬BF=BO-OF£¬Òò´Ë¿ÉÓÃEµÄºá×ø±ê±íʾ³öBFµÄ³¤£®Èç¹û¸ù¾ÝÅ×ÎïÏßÉè³öEµÄ×ø±ê£¬È»ºó´úÈëÉÏÃæµÄÏß¶ÎÖУ¬¼´¿ÉµÃ³ö¹ØÓÚËıßÐÎBOCEµÄÃæ»ýÓëEµÄºá×ø±êµÄº¯Êý¹ØÏµÊ½£¬¸ù¾Ýº¯ÊýµÄÐÔÖʼ´¿ÉÇóµÃËıßÐÎBOCEµÄ×î´óÖµ¼°¶ÔÓ¦µÄEµÄºá×ø±êµÄÖµ£®¼´¿ÉÇó³ö´ËʱEµÄ×ø±ê£®
½â´ð£º½â£º£¨1£©ÓÉÌâÖª£º
4a+2b+6=0
36a-6b+6=0
£¬
½âµÃ£º
a=-
1
2
b=-2
£¬
¹ÊËùÇóÅ×ÎïÏß½âÎöʽΪ£ºy=-
1
2
x2-2x+6£»

£¨2£©¡ßÅ×ÎïÏß½âÎöʽΪ£ºy=-
1
2
x2-2x+6£¬
¡à¶Ô³ÆÖáΪx=
2
2¡Á(-
1
2
)
=-2£¬
ÉèPµã×ø±êΪ£¨-2£¬t£©£¬
¡ßµ±x=0ʱ£¬y=6£¬
¡àC£¨0£¬6£©£¬M£¨-2£¬0£©£¬
¡àCM2=£¨-2-0£©2+£¨0-6£©2=40£®
¢Ùµ±CP=PMʱ£¬£¨-2£©2+£¨t-6£©2=t2£¬½âµÃt=
10
3
£¬
¡àPµã×ø±êΪ£ºP1£¨-2£¬
10
3
£©£»
¢Úµ±CM=PMʱ£¬40=t2£¬½âµÃt=¡À2
10
£¬
¡àPµã×ø±êΪ£ºP2£¨-2£¬2
10
£©»òP3£¨-2£¬-2
10
£©£»
¢Ûµ±CM=CPʱ£¬Óɹ´¹É¶¨ÀíµÃ£º40=£¨-2£©2+£¨t-6£©2£¬½âµÃt=12£¬
¡àPµã×ø±êΪ£ºP4£¨-2£¬12£©£®
×ÛÉÏËùÊö£¬´æÔÚ·ûºÏÌõ¼þµÄµãP£¬Æä×ø±êΪP£¨-2£¬
10
3
£©»òP£¨-2£¬2
10
£©»òP£¨-2£¬-2
10
£©»òP£¨-2£¬12£©£»

£¨3£©¡ßµãA£¨2£¬0£©ºÍµãB£¨-6£¬0£©¹ØÓÚÅ×ÎïÏߵĶԳÆÖáx=-2¶Ô³Æ£¬
¡àQB=QA£¬
¡à|QB-QC|=|QA-QC|£¬
Ҫʹ|QB-QC|×î´ó£¬ÔòÁ¬½áAC²¢ÑÓ³¤£¬ÓëÖ±Ïßx=-2ÏཻÓÚµãQ£¬¼´µãQΪֱÏßACÓëÖ±Ïßx=-2µÄ½»µã£¬
ÉèÖ±ÏßACµÄ½âÎöʽΪy=kx+m£¬
¡ßA£¨2£¬0£©£¬C£¨0£¬6£©£¬
¡à
2k+m=0
m=6
£¬
½âµÃ
k=-3
b=6
£¬
¡ày=-3x+6£¬
µ±x=-2ʱ£¬y=-3¡Á£¨-2£©+6=12£¬
¹Êµ±QÔÚ£¨-2£¬12£©µÄλÖÃʱ£¬|QB-QC|×î´ó£»

£¨4£©¹ýµãE×÷EF¡ÍxÖáÓÚµãF£¬ÉèE£¨n£¬-
1
2
n2-2n+6£©£¨-6£¼n£¼0£©£¬
ÔòEF=-
1
2
n2-2n+6£¬BF=n+6£¬OF=-n£¬
SËıßÐÎBOCE=
1
2
BF•EF+
1
2
£¨OC+EF£©•OF
=
1
2
£¨n+6£©•£¨-
1
2
n2-2n+6£©+
1
2
£¨6-
1
2
n2-2n+6£©•£¨-n£©
=-
3
2
n2-9n+18=-
3
2
£¨n+3£©2+
63
2
£¬
ËùÒÔµ±n=-3ʱ£¬SËıßÐÎBOCE×î´ó£¬ÇÒ×î´óֵΪ
63
2
£®
´Ëʱ£¬µãE×ø±êΪ£¨-3£¬
15
2
£©£®
µãÆÀ£º±¾ÌâÊǶþ´Îº¯ÊýµÄ×ÛºÏÌâÐÍ£¬ÆäÖÐÉæ¼°µ½µÄ֪ʶµãÓдý¶¨ÏµÊý·¨Çó¶þ´Îº¯Êý¡¢Ò»´Îº¯ÊýµÄ½âÎöʽ£¬µÈÑüÈý½ÇÐεÄÐÔÖÊ£¬¶þ´Îº¯ÊýµÄÐÔÖÊ£¬ËıßÐεÄÃæ»ý£¬×ÛºÏÐÔ½ÏÇ¿£¬ÄѶÈÊÊÖУ®ÀûÓÃÊýÐνáºÏ¡¢·ÖÀàÌÖÂÛ¼°·½³Ì˼ÏëÊǽâÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø