ÌâÄ¿ÄÚÈÝ
2£®£¨1£©ÊÔÈ·¶¨ÉÏÊöÕý±ÈÀýº¯ÊýºÍ·´±ÈÀýº¯ÊýµÄ±í´ïʽ£»
£¨2£©µÚÒ»ÏóÏÞÄÚ£¬µ±·´±ÈÀýº¯Êýy=$\frac{k}{x}$µÄÖµ´óÓÚÕý±ÈÀýº¯Êýy=axµÄֵʱ£¬ÇóxµÄȡֵ·¶Î§£¿
£¨3£©Èçͼ£¬M£¨m£¬n£©¡¢A£¨n£¬m£©ÔÚµÚÒ»ÏóÏÞÇÒΪ·´±ÈÀýº¯ÊýͼÏóÉϵÄÁ½¶¯µã£¬¹ýµãM×÷Ö±ÏßMB¡ÎxÖᣬ½»yÖáÓÚµãB£»¹ýµãA×÷Ö±ÏßAC¡ÎyÖá½»xÖáÓÚµãC£¬½»Ö±ÏßMBÓÚµãD£®µ±¡ÏMOA=45¡ãʱ£¬ÇóMµã×ø±ê£®
·ÖÎö £¨1£©½«µã£¨2£¬2$\sqrt{2}$+2£©´úÈëÁ½¸öº¯Êý½âÎöʽ¼´¿É£®
£¨2£©¹Û²ìÁ½¸öº¯ÊýͼÏóµÄλÖ㬷´±ÈÀýº¯ÊýͼÏóÔÚÉÏÃæ£¬¼´¿Éд³ö´ð°¸£®
£¨3£©½«¡÷OMBÈÆµãO˳ʱÕëÐýת90¡ãµÃµ½¡÷OCE£¬Á¬½ÓAM£¬Ö»ÒªÖ¤Ã÷AM=BM+AC£¬Áгö¹ØÓÚm¡¢nµÄ·½³Ì¼´¿É½â¾ö£®
½â´ð ½â£º£¨1£©°Ñµã£¨2£¬2$\sqrt{2}$+2£©·Ö±ð´úÈëÕý±ÈÀýº¯ÊýºÍ·´±ÈÀýº¯Êý½âÎöʽµÃ£º
2$\sqrt{2}$+2=2a£¬½âµÃa=$\sqrt{2}$+1£¬2$\sqrt{2}$+2=$\frac{k}{2}$£¬½âµÃk=4$\sqrt{2}$+4£¬
ËùÒÔÕý±ÈÀýº¯Êý½âÎöʽΪ£ºy=£¨$\sqrt{2}$+1£©x£¬
·´±ÈÀýº¯Êý½âÎöʽ£ºy=$\frac{4\sqrt{2}+4}{x}$£®
£¨2£©µ±0£¼x£¼2ʱ£¬·´±ÈÀýº¯Êýy=$\frac{k}{x}$µÄÖµ´óÓÚÕý±ÈÀýº¯Êýy=axµÄÖµ£®
£¨3£©ÒòΪM£¨n£¬m£©£¬A£¨m£¬n£©£¬¿ÉÖª£ºËıßÐÎBOCDΪÕý·½ÐΣ¬ÓÖ¡ÏMOA=45¡ã£¬
½«¡÷OMBÈÆµãO˳ʱÕëÐýת90¡ãµÃµ½¡÷OCE£¬Á¬½ÓAM£®
¡ß¡ÏBOM+¡ÏAOC=45¡ã£¬¡ÏBOM=¡ÏEOC£¬OE=OM£®BM=CE£¬
¡à¡ÏAOC+¡ÏEOC=45¡ã=¡ÏMOA£¬![]()
ÔÚ¡÷OAMºÍ¡÷OAEÖУ¬
$\left\{\begin{array}{l}{OA=OA}\\{¡ÏAOM=¡ÏAOE}\\{OOE}\end{array}\right.$£¬
¡à¡÷OAM¡Õ¡÷OAE£¬
¡àAM=AE=AC+CE=AC+BM
ÓÖ¡ßBM=m£¬AC=m£¬
¡àAM=2m£¬MD=n-m=DA£¬
¡àÈý½ÇÐÎMDAÊǵÈÑüÈý½ÇÐΣ¬MA=$\sqrt{2}$MD¼´2m=$\sqrt{2}$£¨n-m£© ¢Ù£¬
ÓÖ¡ßMµãÔÚ·´±ÈÀýº¯ÊýͼÏóÉÏ£¬
¡àmn=4$\sqrt{2}$+4 ¢Ú£¬
ÓÉ¢Ù¢Ú½âµÃ$\left\{\begin{array}{l}{m=2}\\{n=2\sqrt{2}+2}\end{array}\right.$£¬
¡àM£¨2£¬2$\sqrt{2}$+2£©£®
µãÆÀ ±¾Ì⿼²é·´±ÈÀýº¯ÊýÓëÒ»´Îº¯ÊýµÄͼÏóµÄ½»µã£¬Ñ§»á´ý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ£¬Äܸù¾ÝͼÏóÓɺ¯ÊýÖµµÄ´óСȷ¶¨×Ô±äÁ¿µÄȡֵ·¶Î§£¬µÚÈý¸öÎÊÌâÌí¼Ó¸¨ÖúÏßÊǽâ¾öÎÊÌâµÄ¹Ø¼ü£¬ÊôÓÚÖп¼³£¿¼ÌâÐÍ£®
| A£® | 38 | B£® | 39 | C£® | 40 | D£® | 42 |
| A£® | $\frac{3}{28}$ | B£® | $\frac{5}{28}$ | C£® | $\frac{3}{56}$ | D£® | $\frac{5}{56}$ |