题目内容

11.如图,△ABC中,∠C=90°,AC=3,AB=5,D为BC边的中点,以AD上一点O为圆心的⊙O和AB、BC均相切,则⊙O的半径为(  )
A.1B.$\frac{6}{7}$C.$\frac{2}{3}$D.1.5

分析 首先过点0作OE⊥AB于点E,OF⊥BC于点F.根据切线的性质,知OE、OF是⊙O的半径;然后由三角形的面积间的关系(S△ABO+S△BOD=S△ABD=S△ACD)列出关于圆的半径的等式,求得圆的半径即可.

解答 解:过点0作OE⊥AB于点E,OF⊥BC于点F.
∵AB、BC是⊙O的切线,
∴点E、F是切点,
∴OE、OF是⊙O的半径;
∴OE=OF;
在△ABC中,∠C=90°,AC=3,AB=5,
∴由勾股定理,得BC=4;
又∵D是BC边的中点,
∴S△ABD=S△ACD
又∵S△ABD=S△ABO+S△BOD
∴$\frac{1}{2}$AB•OE+$\frac{1}{2}$BD•OF=$\frac{1}{2}$CD•AC,
即5×OE+2×OE=2×3,
解得OE=$\frac{6}{7}$,
∴⊙O的半径是$\frac{6}{7}$.
故选B.

点评 本题考查了切线的性质与三角形的面积.注意运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网