题目内容

广东特产专卖店销售龙眼干,其进价为每斤40元,按每斤60元出售,平均每天可售出100斤,后来经调查发现,单价每降低2元,则平均每天的销售量增加20斤.每斤降价多少元,每天销售额最大?

20元 【解析】 试题分析:根据题意可以列出销售额与销售单价之间的关系式,然后整理为顶点式,即可解答本题. 【解析】 设每斤降价x元,销售额为y元, y=(60﹣x)(100+)=﹣10(x﹣25)2+12250, ∴当x<25时,y随x的增大而增大, ∵60﹣40=20, ∴0≤x≤20, ∴当x=20时,y取得最大值, 即每斤降价20元时...
练习册系列答案
相关题目

施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM为12米,现在O点为原点,OM所在直线为x轴建立直角坐标系(如图所示).

(1)直接写出点M及抛物线顶点P的坐标;

(2)求出这条抛物线的函数解析式;

(3)施工队计划在隧道门口搭建一个矩形“脚手架”ABCD,使A、D点在抛物线上,B、C点在地面OM上.为了筹备材料,需求出“脚手架”三根木杆AB、AD、DC的长度之和的最大值是多少?请你帮施工队计算一下.

(1)M(12,0),P(6,6);(2)y=x2+2x;(3)15米. 【解析】试题分析:确定了抛物线的顶点式,可以设抛物线的顶点式,又过原点(0,0),就可以确定抛物线解析式;设OB=x,由对称性得CM=x,这样就可以用含x的式子表示AB、AD、CD了,为求三根木杆AB、AD、DC的长度之和的最大值,提供依据. 试题解析:(1)M(12,0),P(6,6) (2)∵顶点坐标(...

在Rt△ABC中,锐角∠A的平分线与锐角∠B的平分线相交于点D,则∠ADB=______.

135° 【解析】在Rt△ABC中,∠CAB+∠CBA=180°?90°=90°, ∵锐角∠A的平分线与锐角∠B的平分线相交于点D, ∴∠DAB+∠DBA= (∠CAB+∠CBA)= ×90°=45°, 在△ABD中,∠ADB=180°?(∠DAB+∠DBA)=180°?45°=135° 故答案为:135°.

分解因式:16(x-y)2-9(x+y)2.

(7x-y)(x-7y) 【解析】试题分析:利用平方差公式因式分解即可. 试题解析: 16(x-y)2-9(x+y)2 =[4(x-y)-3(x+y)][4(x-y)+3(x+y)] =(x-7y)(7x-y).

已知多项式x2+a能用平方差公式在有理数范围内分解因式,那么在下列四个数中a可以等于( )

A. 9 B. 4

C. -1 D. -2

C 【解析】当x=-1时,x2-1=(x+1)(x-1),其它的三个选项都不符合要求,故选C.

将抛物线y=2(x﹣1)2+2向左平移3个单位,再向下平移4个单位,那么得到的抛物线的表达式为

y=2﹣2 【解析】试题分析:按照“左加右减,上加下减”的规律可得抛物线y=2(x﹣1)2+2向左平移3个单位,再向下平移4个单位得到y=2(x﹣1+3)2+2﹣4=2(x+2)2﹣2.即可得抛物线的解析式为y=2(x+2)2﹣2.

二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过(  )

A. 第一、二、三象限 B. 第一、二、四象限

C. 第二、三、四象限 D. 第一、三、四象限

C 【解析】试题分析:根据抛物线的顶点在第四象限,得出n<0,m<0,即可得出一次函数y=mx+n的图象经过二、三、四象限. 故选C.

如图在平面直角坐标系中,二次函数的图象过正方形ABOC的三个顶点A、B、C,则值为__________。

-2 【解析】试题解析:设正方形的对角线OA长为2m, 则B(-m,m),C(m,m),A(0,2m); 把A,C的坐标代入解析式可得: c=2m①,am2+c=m②, ①代入②得:m2a+2m=m,解得:a=-, 则ac=-•2m=-2.

在等腰梯形ABCD中,AD∥BC,AE⊥BC于E,且AE=AD,BC=3AE, 则∠BAD等于 ( )

A. 120° B. 135° C. 130° D. 不能确定

B 【解析】【解析】 过点D作DF⊥BC于点F. ∵AE⊥BC,DF⊥BC,AD=AE,∴四边形AEFD为正方形,∴AD=EF. ∵AD=AE,BC=3AD,∴BE=AE=EF=FC,∴∠B=45°,∴∠BAD=135°. 故选B.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网