题目内容

如图在平面直角坐标系中,二次函数的图象过正方形ABOC的三个顶点A、B、C,则值为__________。

-2 【解析】试题解析:设正方形的对角线OA长为2m, 则B(-m,m),C(m,m),A(0,2m); 把A,C的坐标代入解析式可得: c=2m①,am2+c=m②, ①代入②得:m2a+2m=m,解得:a=-, 则ac=-•2m=-2.
练习册系列答案
相关题目

已知:如图,AB=DE,CD=FA,∠A=∠D,∠AFC=∠DCF,则BC=EF.你能说出它们相等的理由吗?

见解析 【解析】试题分析:首先连接CE、BF,然后根据条件可证明△ABF≌△DEC,再根据全等三角形的性质可得∠3=∠4,BF=EC,然后证明△BCF≌△EFC可得BC=EF. 试题解析:连接CE、BF,如图: 在△ABF和△DEC中, , ∴△ABF≌△DEC(SAS), ∴∠3=∠4,BF=EC, ∵∠AFC=∠DCF, ∴∠AFC?∠3=∠DCF?∠...

广东特产专卖店销售龙眼干,其进价为每斤40元,按每斤60元出售,平均每天可售出100斤,后来经调查发现,单价每降低2元,则平均每天的销售量增加20斤.每斤降价多少元,每天销售额最大?

20元 【解析】 试题分析:根据题意可以列出销售额与销售单价之间的关系式,然后整理为顶点式,即可解答本题. 【解析】 设每斤降价x元,销售额为y元, y=(60﹣x)(100+)=﹣10(x﹣25)2+12250, ∴当x<25时,y随x的增大而增大, ∵60﹣40=20, ∴0≤x≤20, ∴当x=20时,y取得最大值, 即每斤降价20元时...

如图,坐标平面上,二次函数y=﹣x2+4x﹣k的图形与x轴交于A、B两点,与y轴交于C点,其顶点为D,且k>0.若△ABC与△ABD的面积比为1:4,则k值为何?( )

A. 1 B. C. D.

D 【解析】试题分析:∵y=﹣x2+4x﹣k=﹣(x﹣2)2+4﹣k,∴顶点D(2,4﹣k),C(0,﹣k),∴OC=k,∵△ABC的面积=AB•OC=AB•k,△ABD的面积=AB(4﹣k),△ABC与△ABD的面积比为1:4,∴k=(4﹣k),解得:k=.故选D.

二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),则a+b+1的值是

A. ﹣3 B. ﹣1 C. 2 D. 3

D 【解析】试题分析:根据二次函数图象上点的坐标特征,把(1,1)代入解析式可得到a+b﹣1=1,则a+b=2,所以a+b+1=3. 故选:D.

抛物线y=﹣(x+2)2﹣3的顶点坐标是( )

A. (2,﹣3) B. (﹣2,3) C. (2,3) D. (﹣2,﹣3)

D 【解析】试题分析:∵抛物线y=﹣(x+2)2﹣3为抛物线解析式的顶点式,∴抛物线顶点坐标是(﹣2,﹣3).故选D.

如图所示,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24 ㎝,BC=26㎝,动点P从点A开始沿AD边以每秒1㎝的速度向D点运动,动点Q从点C开始沿CB边以每秒3㎝的速度向B运动,P,Q分别从A,C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t s.

(1)t为何值时,四边形PQCD为平行四边形?

(2)t为何值时,四边形PQCD为等腰梯形?

(3)t为何值时,四边形ABQP为矩形?

(1)t=6时;(2)t=7时;(3)t=时. 【解析】试题分析:(1)要使四边形PQCD是平行四边形,则点在运动的过程中,只需PD=QC就满足题意; (2)作DE⊥BC,PF⊥BC,垂足分别为E,F,要使四边形PQCD为等腰梯形,则QF=CE;依此即可求解; (3)要使四边形ABQP为矩形,则点在运动的过程中,只需AP=BQ就满足题意. 试题解析:【解析】 由已知得AP...

如图,平行四边形ABCD中,E,F分别为边AB,DC的中点,则图中共有平行四边形的个数是 ( )

A. 3 B. 4 C. 5 D. 6

B 【解析】【解析】 ∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD. ∵E,F分别AB,CD的中点,∴AE=EB=DF=FC,∴四边形AEFD是平行四边形,四边形EFCB是平行四边形,四边形BEDF是平行四边形,∴平行四边形的个数共有4个.故选B.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网