题目内容

在等腰梯形ABCD中,AD∥BC,AE⊥BC于E,且AE=AD,BC=3AE, 则∠BAD等于 ( )

A. 120° B. 135° C. 130° D. 不能确定

B 【解析】【解析】 过点D作DF⊥BC于点F. ∵AE⊥BC,DF⊥BC,AD=AE,∴四边形AEFD为正方形,∴AD=EF. ∵AD=AE,BC=3AD,∴BE=AE=EF=FC,∴∠B=45°,∴∠BAD=135°. 故选B.
练习册系列答案
相关题目

广东特产专卖店销售龙眼干,其进价为每斤40元,按每斤60元出售,平均每天可售出100斤,后来经调查发现,单价每降低2元,则平均每天的销售量增加20斤.每斤降价多少元,每天销售额最大?

20元 【解析】 试题分析:根据题意可以列出销售额与销售单价之间的关系式,然后整理为顶点式,即可解答本题. 【解析】 设每斤降价x元,销售额为y元, y=(60﹣x)(100+)=﹣10(x﹣25)2+12250, ∴当x<25时,y随x的增大而增大, ∵60﹣40=20, ∴0≤x≤20, ∴当x=20时,y取得最大值, 即每斤降价20元时...

抛物线y=﹣(x+2)2﹣3的顶点坐标是( )

A. (2,﹣3) B. (﹣2,3) C. (2,3) D. (﹣2,﹣3)

D 【解析】试题分析:∵抛物线y=﹣(x+2)2﹣3为抛物线解析式的顶点式,∴抛物线顶点坐标是(﹣2,﹣3).故选D.

如图所示,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24 ㎝,BC=26㎝,动点P从点A开始沿AD边以每秒1㎝的速度向D点运动,动点Q从点C开始沿CB边以每秒3㎝的速度向B运动,P,Q分别从A,C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t s.

(1)t为何值时,四边形PQCD为平行四边形?

(2)t为何值时,四边形PQCD为等腰梯形?

(3)t为何值时,四边形ABQP为矩形?

(1)t=6时;(2)t=7时;(3)t=时. 【解析】试题分析:(1)要使四边形PQCD是平行四边形,则点在运动的过程中,只需PD=QC就满足题意; (2)作DE⊥BC,PF⊥BC,垂足分别为E,F,要使四边形PQCD为等腰梯形,则QF=CE;依此即可求解; (3)要使四边形ABQP为矩形,则点在运动的过程中,只需AP=BQ就满足题意. 试题解析:【解析】 由已知得AP...

和直线l距离为8 cm的直线有______条.

2 【解析】【解析】 在同一平面上,和直线l距离为8cm的直线在直线L的两侧各有一条.故答案为:2.

□ABCD的周长为36 cm,AB=BC,则较长边的长为( )

A. 15 cm B. 7.5 cm C. 21 cm D. 10.5 cm

D 【解析】【解析】 ∵?ABCD的周长=2(AB+BC)=36,∴AB+BC=18.∵AB=BC,∴BC=10.5. 故选D.

如图所示,AD为△ABC的一条角平分线,E,F分别在AC,AB上,DE∥AB,BF=AE.试说明EF=BD.

答案见解析 【解析】试题分析:由角平分线的定义和平行线的性质可证明∠ADE=∠CAD,可得AE=DE,结合条件可证明四边形EFBD为平行四边形,可得EF=BD. 试题解析:证明:∵AD平分∠BAC,∴∠BAD=∠CAD.∵DE∥AB,∴∠BAD=∠ADE,∴∠CAD=∠ADE,∴AE=DE.又∵BF=AE,∴DE=BF.又∵DE∥AB,∴四边形EFBD是平行四边形,∴EF=BD. ...

如图,平行四边形ABCD中,E,F分别为边AB,DC的中点,则图中共有平行四边形的个数是 ( )

A. 3 B. 4 C. 5 D. 6

B 【解析】【解析】 ∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD. ∵E,F分别AB,CD的中点,∴AE=EB=DF=FC,∴四边形AEFD是平行四边形,四边形EFCB是平行四边形,四边形BEDF是平行四边形,∴平行四边形的个数共有4个.故选B.

如图,在△ABC中,AB=AC=5,BC=8,P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是(  )

A. 4.8 B. 4.8或3.8 C. 3.8 D. 5

A 【解析】试题分析:作AF⊥BC于F,根据等腰三角形三线合一的性质得出BF=CF=4,然后根据勾股定理求得AF=3,连接AP,根据△ABC的面积=△ABP的面积+△ACP的面积解出答案即可.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网