题目内容
15.解方程组:(1)$\left\{\begin{array}{l}{3x-y=5}\\{5x+2y=23}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{2x+3y+z=6}\\{x-y+2z=\frac{7}{2}}\\{y-2z=-3}\end{array}\right.$.
分析 (1)方程组利用加减消元法求出解即可;
(2)方程组利用加减消元法求出解即可.
解答 解:(1)$\left\{\begin{array}{l}{3x-y=5①}\\{5x+2y=23②}\end{array}\right.$,
①×2+②得:11x=33,即x=3,
把x=3代入①得:y=4,
则方程组的解为$\left\{\begin{array}{l}{x=3}\\{y=4}\end{array}\right.$;
(2)方程组整理得:$\left\{\begin{array}{l}{2x+3y+z=6①}\\{2x-2y+4z=7②}\\{y-2z=-3③}\end{array}\right.$,
①-②得:5y-3z=-1④,
③×5-④得:-7z=-14,即z=2,
把z=2代入④得:y=1,
把y=1,z=2代入①得:x=$\frac{1}{2}$,
则方程组的解为$\left\{\begin{array}{l}{x=\frac{1}{2}}\\{y=1}\\{z=2}\end{array}\right.$.
点评 此题考查了解二元一次方程组,以及解三元一次方程组,熟练掌握运算法则是解本题的关键.
练习册系列答案
相关题目
10.
已知图中的两个三角形全等,则∠1等于( )
| A. | 72° | B. | 60° | C. | 58° | D. | 50° |