题目内容
先观察:1-
=
×
,1-
=
×
,1-
=
×
,…
(1)探究规律填空:1-
= × ;
(2)计算:(1-
)•(1-
)•(1-
)•…•(1-
).
| 1 |
| 22 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 32 |
| 2 |
| 3 |
| 4 |
| 3 |
| 1 |
| 42 |
| 3 |
| 4 |
| 5 |
| 4 |
(1)探究规律填空:1-
| 1 |
| n2 |
(2)计算:(1-
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| 42 |
| 1 |
| 20132 |
考点:有理数的混合运算
专题:规律型
分析:(1)根据平方差公式即可求解;
(2)先根据平方差公式计算,再约分计算即可求解.
(2)先根据平方差公式计算,再约分计算即可求解.
解答:解:(1)1-
=(1-
)×(1+
);
(2)原式=(1-
)•(1+
)•(1-
)•(1+
)•(1-
)•(1+
)•…•(1-
)•(1+
)
=
•
•
•
•
•
•…
•
=
•
=
.
故答案为:(1-
),(1+
).
| 1 |
| n2 |
| 1 |
| n |
| 1 |
| n |
(2)原式=(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 2013 |
| 1 |
| 2013 |
=
| 1 |
| 2 |
| 3 |
| 2 |
| 2 |
| 3 |
| 4 |
| 3 |
| 3 |
| 4 |
| 5 |
| 4 |
| 2012 |
| 2013 |
| 2014 |
| 2013 |
=
| 1 |
| 2 |
| 2014 |
| 2013 |
=
| 1007 |
| 2013 |
故答案为:(1-
| 1 |
| n |
| 1 |
| n |
点评:考查了有理数的运算,关键是熟练掌握平方差公式,正确进行计算.
练习册系列答案
相关题目