题目内容

矩形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示放置.点A1,A2,A3,A4…和点C1,C2,C3,C4…,分别在直线y=kx+b(k>0)和x轴上,若点B1(1,2),B2(3,4),且满足
A1A2
A2A3
=
A2A3
A3A4
=
A3A4
A4A5
=…=
An-1An
AnAn-1
,则直线y=kx+b的解析式为
 
,点B3的坐标为
 
,点Bn的坐标为
 
考点:矩形的性质,一次函数图象上点的坐标特征
专题:规律型
分析:表示出点A1、A2的坐标,然后利用待定系数法求一次函数解析式解答;根据一次函数图象上点的坐标特征求出A3的坐标,再写出B3的坐标,然后根据横坐标与纵坐标的变化规律求出Bn的坐标即可.
解答:解:∵B1(1,2),B2(3,4),
∴A1(0,2),A2(1,4),
b=2
k+b=4

解得
k=2
b=2

所以直线解析式为y=2x+2;
当x=3时,y=2×3+2=8,
∴点A3(3,8),
A1A2
A2A3
=
A2A3
A3A4
=
A3A4
A4A5
=…=
An-1An
AnAn-1

∴直线与矩形组成的三角形都是相似三角形,
∵1+2+
1
2
×8=7,
∴B3(7,8),
…,
Bn的横坐标为2n-1,纵坐标为2n
所以,Bn(2n-1,2n).
故答案为:y=2x+2;(7,8);(2n-1,2n).
点评:本题考查了矩形的性质,一次函数图象上点的坐标特征,待定系数法求一次函数解析式,找出点B系列的横坐标与纵坐标的变化规律是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网