ÌâÄ¿ÄÚÈÝ
7£®£¨1£©·Ö±ðÅжϺ¯Êýy=$\frac{1}{x}$£¨x£¾0£©ºÍy=x+1£¨-4£¼x¡Ü2£©ÊDz»ÊÇÓн纯Êý£¿ÈôÊÇÓн纯Êý£¬ÇóÆä±ß½çÖµ£»
£¨2£©Èôº¯Êýy=-x+1£¨a¡Üx¡Üb£¬b£¾a£©µÄ±ß½çÖµÊÇ2£¬ÇÒÕâ¸öº¯ÊýµÄ×î´óÖµÒ²ÊÇ2£¬ÇóbµÄȡֵ·¶Î§£»
£¨3£©½«º¯Êýy=x2£¨-1¡Üx¡Üm£¬m¡Ý0£©µÄͼÏóÏòÏÂÆ½ÒÆm¸öµ¥Î»£¬µÃµ½µÄº¯ÊýµÄ±ß½çÖµÊÇt£¬µ±mÔÚʲô·¶Î§Ê±£¬Âú×ã$\frac{3}{4}$¡Üt¡Ü1£¿
·ÖÎö £¨1£©¸ù¾ÝÓн纯ÊýµÄ¶¨Òå¼´¿ÉµÃ³öº¯Êýy=$\frac{1}{x}$ £¨x£¾0£©²»ÊÇÓн纯Êý¡¢º¯Êýy=x+1£¨-4¡Üx¡Ü2£©ÊÇÓн纯Êý£¬ÔÙ´úÈëx=-4ºÍx=2¼´¿ÉµÃ³öÆä±ß½çÖµ£»
£¨2£©¸ù¾ÝÒ»´Îº¯ÊýµÄÐÔÖʿɵóöº¯Êýy=-x+1Êǵ¥¼õº¯Êý£¬½áºÏº¯ÊýµÄ×î´óֵΪ2¼´¿ÉµÃ³öaµÄÖµ£¬ÔÙ´úÈëbµÄÖµ½áºÏÓн纯ÊýµÄ¶¨ÒåÒÔ¼°¸Ãº¯ÊýµÄ±ß½çÖµ¼´¿ÉµÃ³ö¹ØÓÚbµÄÒ»ÔªÒ»´Î²»µÈʽ×飬½â²»µÈʽ×é¼´¿ÉµÃ³öbµÄȡֵ·¶Î§£»
£¨3£©µ±m£¾1ʱ£¬´úÈëx=0¼´¿ÉµÃ³öy=-m£¬ÓÉ$\frac{3}{4}$¡Üt¡Ü1¿ÉµÃ³ö´ËÖÖÇé¿ö²»´æÔÚ£¬´Ó¶øµÃ³öm¡Ü1£¬½áºÏ¶þ´Îº¯ÊýµÄÐÔÖÊÒÔ¼°¶þ´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷ÕÒ³öÔº¯Êýºá×ø±êΪ-1ºÍ0ʱ£¬yµÄÖµ£¬¸ù¾ÝÆ½ÒÆµÄÐÔÖʼ´¿ÉµÃ³öÆ½ÒÆºóµÄº¯ÊýµÄ×îÖµ£¬¸ù¾ÝÓн纯ÊýµÄ¶¨ÒåÒÔ¼°Æä±ß½çÖµ$\frac{3}{4}$¡Üt¡Ü1£¬¼´¿ÉµÃ³ö¹ØÓÚmµÄÒ»ÔªÒ»´Î²»µÈʽ×飬½â²»µÈʽ×é¼´¿ÉµÃ³ömµÄȡֵ·¶Î§£¬´ËÌâµÃ½â£®
½â´ð ½â£º£¨1£©¸ù¾ÝÓн纯ÊýµÄ¶¨ÒåÖª£¬º¯Êýy=$\frac{1}{x}$ £¨x£¾0£©²»ÊÇÓн纯Êý£»
º¯Êýy=x+1£¨-4¡Üx¡Ü2£©ÊÇÓн纯Êý£®
¡ß-4+1=-3£¬2+1=3£¬
¡ày=x+1£¨-4£¼x¡Ü2£©±ß½çֵΪ3£®
£¨2£©¡ßk=-1£¼0£¬
¡àº¯Êýy=-x+1µÄͼÏóÊÇyËæxµÄÔö´ó¶ø¼õС£¬
¡àµ±x=aʱ£¬y=-a+1=2£¬
½âµÃ£ºa=-1£»
µ±x=bʱ£¬y=-b+1£¬
¡à$\left\{\begin{array}{l}{-2¡Ü-b+1¡Ü2}\\{b£¾a}\\{a=-1}\end{array}\right.$£¬
¡à-1£¼b¡Ü3£»
£¨3£©Èôm£¾1£¬º¯ÊýÏòÏÂÆ½ÒÆm¸öµ¥Î»ºó£¬x=0ʱ£¬º¯ÊýֵСÓÚ-1£¬
´Ëʱº¯ÊýµÄ±ß½çt¡Ý1£¬ÓëÌâÒâ²»·û£¬¹Êm¡Ü1£®
µ±x=-1ʱ£¬y=1£¬º¯Êýy=x2¹ýµã£¨-1£¬1£©£»
µ±x=0ʱ£¬y×îС=0£¬º¯Êýy=x2¹ýµã£¨0£¬0£©£®
¶¼ÏòÏÂÆ½ÒÆm¸öµ¥Î»£¬Ôòº¯Êýy=x2-m¹ýµã£¨-1£¬1-m£©¡¢£¨0£¬-m£©£¬
¡ß$\frac{3}{4}$¡Üt¡Ü1£¬
¡à$\left\{\begin{array}{l}{\frac{3}{4}¡Ü1-m¡Ü1}\\{m¡Ü1-m}\end{array}\right.$»ò$\left\{\begin{array}{l}{-1¡Ü-m¡Ü-\frac{3}{4}}\\{1-m¡Üm}\end{array}\right.$£¬
½âµÃ£º0¡Üm¡Ü$\frac{1}{4}$ »ò $\frac{3}{4}$¡Üm¡Ü1£®
¹Êµ±0¡Üm¡Ü$\frac{1}{4}$ »ò $\frac{3}{4}$¡Üm¡Ü1ʱ£¬Âú×ã$\frac{3}{4}$¡Üt¡Ü1£®
µãÆÀ ±¾Ì⿼²éÁËÒ»´Îº¯ÊýµÄÐÔÖÊ¡¢¶þ´Îº¯ÊýµÄÐÔÖÊ¡¢Óн纯ÊýµÄ¶¨ÒåÒÔ¼°½âÒ»ÔªÒ»´Î²»µÈʽ×飬½âÌâµÄ¹Ø¼üÊÇ£º£¨1£©¸ù¾ÝÓн纯ÊýµÄ¶¨ÒåÅжÏÒ»¸öº¯ÊýÊÇ·ñΪÓн纯Êý£»£¨2£©ÕÒ³ö¹ØÓÚbµÄÒ»ÔªÒ»´Î²»µÈʽ×飻£¨3£©ÕÒ³ö¹ØÓÚmµÄÒ»ÔªÒ»´Î²»µÈʽ×飮±¾ÌâÊôÓÚÖеµÌ⣬ÄѶȲ»´ó£¬½â¾ö¸ÃÌâÐÍÌâĿʱ£¬¸ù¾ÝÓн纯ÊýµÄ¶¨Òå½áºÏ±ß½çÖµÕÒ³ö²»µÈʽ×éÊǹؼü£®
| 3 | a | b | c | -1 | 2 | ¡ |
| A£® | -1 | B£® | 0 | C£® | 2 | D£® | 3 |
| A£® | $\frac{3{a}^{4}{b}^{2}}{6{a}^{2}{b}^{4}}$=$\frac{{a}^{3}}{2{b}^{2}}$ | B£® | $\frac{{a}^{2}+{b}^{2}}{a+b}$=a+b | ||
| C£® | $\frac{x+3}{{x}^{2}-9}$=$\frac{3}{x-3}$ | D£® | $\frac{b-a}{£¨a-b£©^{2}}$=$\frac{1}{b-a}$ |