题目内容

17.已知在△ABC中,∠A=62°,BO、CO分别是∠ABC、∠ACB的平分线,且BO、CO相交于O,则∠BOC的度数是121°.

分析 利用三角形的内角和定理以及角平分线的定义求∠BOC与∠A的关系,再把∠A代入即可求∠BOC的度数.

解答 解:∵BO、CO分别平分∠ABC和∠ACB,
∴∠OBC=$\frac{1}{2}$∠ABC,∠OCB=$\frac{1}{2}$∠ACB,
∴∠BOC=180°-(∠OBC+∠OCB)
=180°-($\frac{1}{2}$∠ABC+$\frac{1}{2}$∠ACB)
=180°-$\frac{1}{2}$(∠ABC+∠ACB)
=180°-$\frac{1}{2}$(180°-∠A)
=90°+$\frac{1}{2}$∠A.
∵∠A=62°时,
∴∠BOC=90°+$\frac{1}{2}$∠A=90°+31°=121°.
故答案为:121°.

点评 本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网