题目内容
8.分析 根据题意得出直线BB1的解析式为:y=$\sqrt{3}$x,进而得出B,B1,B2,B3坐标,进而得出坐标变化规律,进而得出答案.
解答 解:过B1向x轴作垂线B1C,垂足为C,![]()
由题意可得:A(1,0),AO∥A1B1,∠B1OC=30°,
∴CB1=OB1cos30°=$\frac{\sqrt{3}}{2}$,
∴B1的横坐标为:$\frac{1}{2}$,则B1的纵坐标为:$\frac{\sqrt{3}}{2}$,
∴点B1,B2,B3,…都在直线y=$\sqrt{3}$x上,
∴B1($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),
等边三角形边长为1可得出:A的横坐标为:1,
∴y=$\sqrt{3}$,
∴A2(2,$\sqrt{3}$),
…
An(1+$\frac{n}{2}$,$\frac{n\sqrt{3}}{2}$).
∴A2015($\frac{2017}{2}$,$\frac{2015\sqrt{3}}{2}$).
故答案为($\frac{2017}{2}$,$\frac{2015\sqrt{3}}{2}$).
点评 此题主要考查了一次函数图象上点的坐标特征以及数字变化类,得出A点横纵坐标变化规律是解题关键.
练习册系列答案
相关题目
16.某工厂现有甲种原料360千克,乙种原料290千克,计划用这两种原料全部生产A、B两种产品共50件,生产A、B两种产品与所需原料情况如下表所示:
(1)该工厂生产A、B两种产品有哪几种方案?
(2)若生成一件A产品可获利80元,生产一件B产品可获利120元,怎样安排生产可获得最大利润?
| 原料 型号 | 甲种原料(千克) | 乙种原料(千克) |
| A产品(每件) | 9 | 3 |
| B产品(每件) | 4 | 10 |
(2)若生成一件A产品可获利80元,生产一件B产品可获利120元,怎样安排生产可获得最大利润?
13.
如图,在△ABC中,CA=CB,∠ACB=90°,以AB的中点D为圆心,作圆心角为90°的扇形DEF,点C恰在EF上,设∠BDF=α(0°<α<90°),当α由小到大变化时,图中阴影部分的面积( )
| A. | 由小到大 | B. | 由大到小 | ||
| C. | 不变 | D. | 先由小到大,后由大到小 |
20.一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:
例如,购买A类会员年卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于45~55次之间,则最省钱的方式为( )
| 会员年卡类型 | 办卡费用(元) | 每次游泳收费(元) |
| A 类 | 50 | 25 |
| B 类 | 200 | 20 |
| C 类 | 400 | 15 |
| A. | 购买A类会员年卡 | B. | 购买B类会员年卡 | C. | 购买C类会员年卡 | D. | 不购买会员年卡 |