题目内容
14.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A、B在小正方形的顶点上,请在图1、图2中各画一个三角形,满足以下要求:(1)在图1中,画直角三角形ABC,点C在小正方形的顶点上,且△ABC的面积为5;
(2)在图2中,画△ABE,点E在小正方形的顶点上,△ABE有一个内角为45°,且面积为3.
分析 (1)把AB=$\sqrt{5}$看作底,高为2$\sqrt{5}$,由此即可解决问题.
(2)如图把AE=3,作为底,高为2,面积正好是3,∠E=45°满足条件.
解答 解:(1)如图1中,△ABC即为所求.![]()
∵∠A=90°,AC=2$\sqrt{5}$,AB=$\sqrt{5}$,
∴S△ABC=$\frac{1}{2}$×$2\sqrt{5}$×$\sqrt{5}$=5.
(2)如图2中,△ABE即为所求.![]()
S△ABE=$\frac{1}{2}$×3×2=3,∠E=45°.
点评 本题考查作图-复杂作图、三角形面积、勾股定理等知识,解题的关键是利用数形结合的思想解决问题,属于中考常考题型.
练习册系列答案
相关题目
4.
春天来了,小颖要用总长为12米的篱笆围一个长方形花圃,其一边靠墙(墙长9米),另外三边是篱笆,其中BC不超过9米.设垂直于墙的两边AB,CD的长均为x米,长方形花圃的面积为y米2.
(1)用x表示花圃的一边BC的长,判断x=1是否符合题意,并说明理由;
(2)求y与x之间的关系式;
根据关系式补充表格:
观察表中数据,写出y随x变化的一个特征:y随x的增大先增大后减小.
(1)用x表示花圃的一边BC的长,判断x=1是否符合题意,并说明理由;
(2)求y与x之间的关系式;
根据关系式补充表格:
| x(米) | … | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 | 4.5 | … |
| y(米2) | … | 13.5 | 16 | 17.5 | 17.5 | 13.5 | … |
5.一支原长为20cm的蜡烛,点燃后,其剩余长度y(cm)与燃烧时间x(min)之前的关系如表:
(1)表中反映的自变量是什么?因变量是什么?
(2)求出剩余长度y(cm)与燃烧时间x(min)之间的关系式;
(3)估计这支蜡烛最多可燃烧多少分钟?
| 燃烧时间x(min) | 10 | 20 | 30 | 40 | 50 | … |
| 剩余长度y(cm) | 19 | 18 | 17 | 16 | 15 | … |
(2)求出剩余长度y(cm)与燃烧时间x(min)之间的关系式;
(3)估计这支蜡烛最多可燃烧多少分钟?
9.如图1,四边形ABCD中,AB∥CD,AD=DC=CB=n,∠A=60°,取AB的中点A1,连接A1C,再分别取A1C,BC的中点D1,C1,连接D1C1,得到四边形A1BC1D1.如图2,同样方法操作得到四边形A2BC2D2,如图3,…,如此进行下去,则四边形AnBCnDn的面积为( )

| A. | $\frac{3\sqrt{3}{n}^{2}}{{4}^{n}}$ | B. | $\frac{3\sqrt{3}{n}^{2}}{{2}^{n+1}}$ | C. | $\frac{3\sqrt{3}{n}^{2}}{{4}^{n+1}}$ | D. | $\frac{3\sqrt{3}{n}^{2}}{{2}^{n}}$ |