题目内容
11.金堂骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场,某车行经营的A型车去年2月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年2月份与去年2月份卖出的A型车数量相同,则今年2月份A型车销售总额将比去年2月份销售总额增加25%.(1)求今年2月份A型车每辆销售价多少元?
(2)该车行计划今年3月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的2倍,A、B两种型号车的进货和销售价格如表,问应如何进货才能使这批车获利最多?
| A型车 | B型车 | |
| 进货价格(元/辆) | 1100 | 1400 |
| 销售价格(元/辆) | 今年的销售价格 | 2400 |
分析 (1)设去年2月份A型车每辆的售价为x元,则今年2月份A型车每辆的售价为(x+400)元,根据单价=总价÷数量结合去年与今年销售数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)设购进A型车m辆,获得的总利润为w元,则购进B型车(50-m)辆,根据总利润=单辆利润×购进数量,即可得出w关于m的函数关系式,再根据B型车的进货数量不超过A型车数量的两倍,可求出m的取值范围,根据一次函数的性质即可解决最值问题.
解答 解:(1)设去年2月份A型车每辆的售价为x元,则今年2月份A型车每辆的售价为(x+400)元,
根据题意得:$\frac{32000}{x}$=$\frac{32000×(1+25%)}{x+400}$,
解得:x=1600,
经检验,x=1600是原方程的解,
则x+400=2000.
答:今年2月份A型车每辆销售价为2000元;
(2)设购进A型车m辆,获得的总利润为w元,则购进B型车(50-m)辆,
根据题意得:w=(2000-1100)m+(2400-1400)(50-m)=-100m+50000.
又∵50-m≤2m,
∴m≥16$\frac{2}{3}$.
∵k=-100<0,
∴当m=17时,w取最大值.
答:购进A型车17两,B型车33辆,获利最多.
点评 本题考查了一次函数的应用、分式方程的应用以及解一元一次不等式,解题的关键是:(1)根据单价=总价÷数量,列出关于x的分式方程;(2)根据总利润=单辆利润×购进数量,找出w关于m的函数关系式.
练习册系列答案
相关题目
1.将九年级两个班男生掷实心球的成绩进行整理,并绘制出频数分布表、扇形统计图和频数分布直方图(不完整).(x表示成绩,且规定x≥6.25合格,x≥9.25为优秀)
(1)频数分布表中,a=5,b=15,其中成绩合格的有45人,请补全频数分布直方图;
(2)这两个班男生成绩的中位数落在C组,扇形统计图中E组对应的圆心角是36°;
(3)要从成绩优秀的学生中,随机选出2人介绍经验,已知甲、乙两位同学的成绩均为优秀,用列表法或画树状图法求甲、乙两位同学至少有1人被选中的概率(提示:成绩优秀的其他同学可用a、b、c、d、e…表示)
| 组别 | 成绩(米) | 频数 |
| A | 5.25≤x<6.25 | 5 |
| B | 6.25≤x<7.25 | 10 |
| C | 7.25≤x<8.25 | a |
| D | 8.25≤x<9.25 | 15 |
| E | 9.25≤x≤10.25 | b |
(2)这两个班男生成绩的中位数落在C组,扇形统计图中E组对应的圆心角是36°;
(3)要从成绩优秀的学生中,随机选出2人介绍经验,已知甲、乙两位同学的成绩均为优秀,用列表法或画树状图法求甲、乙两位同学至少有1人被选中的概率(提示:成绩优秀的其他同学可用a、b、c、d、e…表示)
2.菱形具有而矩形不一定具有的特征是( )
| A. | 对角相等 | B. | 对角线互相平分 | ||
| C. | 一组对边平行,另一组对边相等 | D. | 对角线互相垂直 |