题目内容

把代数式xy2﹣9x分解因式,结果正确的是( )

A. x(y2﹣9) B. x(y+3)2 C. x(y+3)(y﹣3) D. x(y+9)(y﹣9)

C 【解析】xy2﹣9x=x(y2-9)=x(y+3)(y-3),故选C.
练习册系列答案
相关题目

如图,某登山运动员从营地A沿坡角为30°的斜坡AB到达山顶B,如果AB=2000米,则他实际上升了________米.

1000 【解析】试题分析:过点B作BC⊥水平面于点C,在Rt△ABC中,根据AB=200米,∠A=30°,求出BC的长度即可.过点B作BC⊥水平面于点C,在Rt△ABC中,∵AB=2000米,∠A=30°,∴BC=ABsin30°=2000×=1000

把多项式(a﹣2)+m(2﹣a)分解因式等于( ).

A.(a﹣2)(+m) B.(a﹣2)(﹣m)

C.m(a﹣2)(m﹣1) D.m(a﹣2)(m+1)

C. 【解析】 试题分析:先把(2﹣a)转化为(a﹣2),然后提取公因式m(a﹣2),可得(a﹣2)+m(2﹣a)= m(a﹣2)(m﹣1). 故选:C.

计算(1)~(3)题,并根据计算结果将(4)~(6)题进行分解因式.

(1)(x-2)(x-1)=______; (2)3x(x-2)=______;

(3)(x-2)2=______; (4)3x2-6x=______;

(5)x2-4x+4=______; (6)x2-3x+2=______.

x2-3x+2 3x2-6x x2-4x+4 3x(x-2) (x-2)2 (x-2)(x-1) 【解析】(1)根据多项式乘以多项式的乘法法则可得(x-2)(x-1)=x2-3x+2;(2)根据单项式乘以多项式的乘法法则可得3x(x-2)=3x2-6x;(3)根据完全平方公式可得(x-2)2=x2-4x+4;(4)提取公因式3x可得3x2-6x=3x(x-2);(5)根据完全平方公式因式分解...

下列各式的因式分解中正确的是( )

A. -m2+mn-m=-m(m+n-1) B. 9abc-6a2b2=3abc(3-2ab)

C. 3a2x-6bx+3x=3x(a2-2b) D. ab2+a2b=ab(a+b)

D 【解析】选项A,原式=-m(m-n+1);选项B,原式=3abc(3c-2ab);选项C,原式=3x(a2-2b+1);选项D,原式=ab(a+b);故选D.

已知抛物线

(1)用配方法求它的顶点坐标、对称轴;

(2)x取何值时,y随x增大而减小?

(3)x取何值时,抛物线在x轴上方?

(1)顶点坐标为(-1, ),对称轴为:x= -1;(2)x﹥-1时,随增大而减小 ;(3)-4﹤x﹤2时,抛物线在x轴上方. 【解析】试题分析:(1)用配方法时,先提二次项系数,再配方,写成顶点式,根据顶点式的坐标特点求顶点坐标及对称轴; (2)对称轴是x=-1,开口向下,根据对称轴及开口方向确定函数的增减性; (3)令y=0,确定函数图象与x轴的交点,结合开口方向判断x的取值...

直角坐标平面上将二次函数的图象向左平移1个单位,再向上平移1个单位,则其顶点为(  )

A. (0,0)

B. (1,-2)

C. (0,-1)

D. (-2,1)

C 【解析】由题意得原抛物线的顶点为(1,-2),然后由图象向左平移1个单位,再向上平移1个单位,可得新抛物线的顶点为(0,-1). 故选:C.

抛物线y=ax2+bx+c上部分点的横坐标x、纵坐标y的对应值如下表:

x

-2

-1

0

1

2

y

0

4

6

6

4

从上表可知,下列说法中正确的是___________ (填写序号).

①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;③抛物线的对称轴是x=0.5;④在对称轴左侧,y随x的增大而增大.

①③④ 【解析】根据图表,当x=-2,y=0,根据抛物线的对称性,当x=3时,y=0,即抛物线与x轴的交点为(-2,0)和(3,0); ∴抛物线的对称轴是直线x=3-, 根据表中数据得到抛物线的开口向下, ∴当x=时,函数有最大值,而不是x=0,或1对应的函数值6, 并且在直线x=的左侧,y随x增大而增大. 所以①③④正确,②错. 故答案为:①③④.

当a=_______时,方程=2的解为4.

【解析】由题意得: , 解得:a=, 经检验a=符合原方程, 故答案为: .

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网