题目内容
19.用代入消元法解下列方程组:(1)$\left\{\begin{array}{l}{m-2n=4}\\{2m-n=2}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{2x+y=3}\\{3x-5y=11}\end{array}\right.$;
(3)$\left\{\begin{array}{l}{3x+2y=3}\\{x+3y=8}\end{array}\right.$;
(4)$\left\{\begin{array}{l}{\frac{2}{3}y=x+1}\\{2y-5x=1}\end{array}\right.$.
分析 各方程组变形后,利用代入消元法求出解即可.
解答 解:(1)$\left\{\begin{array}{l}{m-2n=4①}\\{2m-n=2②}\end{array}\right.$,
由①得:m=2n+4③,
把③代入②得:4n+8-n=2,即n=-2,
把n=-2代入③得:m=0,
则方程组的解为$\left\{\begin{array}{l}{m=0}\\{n=-2}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{2x+y=3①}\\{3x-5y=11②}\end{array}\right.$,
①×5+②得:13x=26,即x=2,
把x=2代入①得:y=-1,
则方程组的解为$\left\{\begin{array}{l}{x=2}\\{y=-1}\end{array}\right.$;
(3)$\left\{\begin{array}{l}{3x+2y=3①}\\{x+3y=8②}\end{array}\right.$,
②×3-①得:7y=21,即y=3,
把y=3代入②得:x=-1,
则方程组的解为$\left\{\begin{array}{l}{x=-1}\\{y=3}\end{array}\right.$;
(4)方程组整理得:$\left\{\begin{array}{l}{3x-2y=-3①}\\{2y-5x=1②}\end{array}\right.$,
由②得:2y=5x+1③,
把③代入①得:3x-5x-1=-3,即x=1,
把x=1代入③得:y=3,
则方程组的解为$\left\{\begin{array}{l}{x=1}\\{y=3}\end{array}\right.$.
点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.