题目内容

2.用长为32米的篱笆围成一个矩形养鸡场,设围成的矩形一边长为x米,面积为y平方米.
(1)求y关于x的函数关系式;
(2)当x为何值时,围成的养鸡场面积为60平方米?
(3)能否围成面积最大的养鸡场?如果能,请求出其边长及最大面积;如果不能,请说明理由.

分析 (1)根据题意可以写出y关于x的函数关系式;
(2)令y=60代入第一问求得的函数关系式,可以求得相应的x的值;
(3)将第一问中的函数关系式化为顶点式,可以求得函数的最值,从而本题得以解决.

解答 解:(1)由题意可得,
y=x$•\frac{32-2x}{2}$=x(16-x)=-x2+16x,
即y关于x的函数关系式是:y=-x2+16x(0<x<16);
(2)令y=60,则60=-x2+16x,
解得x1=6,x2=10.
即当x为6米或10米时,围成的养鸡场面积为60平方米;
(3)能围成面积最大的养鸡场,
∵y=-x2+16x=-(x-8)2+64,
∴当x=8时,y取得最大值,此时y=64,
即当x=8时,围成的养鸡场的最大面积是64平方米.

点评 本题考查二次函数的应用、一元二次方程的应用,解题的关键是明确题意,找出所求问题需要的条件.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网