题目内容

已知,AB是⊙O的直径,弦CD⊥AB,E是
AC
上的一点,AE,DC的延长线相交于点F,求证:∠AED=∠CEF.
考点:圆周角定理,圆内接四边形的性质
专题:证明题
分析:连结AD,如图,根据垂径定理由CD⊥AB得到弧AC=弧AD,再根据圆周角定理得∠ADC=∠AED,然后根据圆内接四边形的性质得∠CEF=∠ADC,于是利用等量代换即可得到结论.
解答:证明:连结AD,如图,
∵CD⊥AB,
∴弧AC=弧AD,
∴∠ADC=∠AED,
∵∠CEF=∠ADC,
∴∠AED=∠CEF.
点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理和圆内接四边形的性质.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网