题目内容
考点:切线的性质
专题:
分析:连接OA,OB,在优弧AB上任取一点D(不与A、B重合),连接BD,AD,如图所示,由PA与PB都为圆O的切线,利用切线的性质得到OA与AP垂直,OB与BP垂直,在四边形APBO中,根据四边形的内角和求出∠AOB的度数,再利用同弧所对的圆周角等于所对圆心角的一半求出∠ADB的度数,再根据圆内接四边形的对角互补即可求出∠ACB的度数.
解答:
解:连接OA,OB,在优弧AB上任取一点D(不与A、B重合),
连接BD,AD,如图所示:
∵PA、PB是⊙O的切线,
∴OA⊥AP,OB⊥BP,
∴∠OAP=∠OBP=90°,
又∵∠P=40°,
∴∠AOB=360°-(∠OAP+∠OBP+∠P)=140°,
∵圆周角∠ADB与圆心角∠AOB都对
,
∴∠ADB=
∠AOB=70°,
∵四边形ACBD为圆内接四边形,
∴∠ADB+∠ACB=180°,
则∠ACB=110°.
故答案为:110°.
连接BD,AD,如图所示:
∵PA、PB是⊙O的切线,
∴OA⊥AP,OB⊥BP,
∴∠OAP=∠OBP=90°,
又∵∠P=40°,
∴∠AOB=360°-(∠OAP+∠OBP+∠P)=140°,
∵圆周角∠ADB与圆心角∠AOB都对
| AB |
∴∠ADB=
| 1 |
| 2 |
∵四边形ACBD为圆内接四边形,
∴∠ADB+∠ACB=180°,
则∠ACB=110°.
故答案为:110°.
点评:此题考查了切线的性质,圆周角定理,圆内接四边形的性质,以及四边形的内角和,熟练掌握切线的性质是解本题的关键.
练习册系列答案
相关题目
若代数式m2n3x-1与3nx+3m2是同类项,则x的值为( )
| A、-1 | B、1 | C、2 | D、3 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
抛掷一枚质地均匀的骰子,正面向上的点数是偶数的概率是( )
A、
| ||
B、
| ||
C、
| ||
D、
|