题目内容

7.对实数a,b,定义运算“★”:a★b=$\left\{\begin{array}{l}{a(a≥0)}\\{b(a<0)}\end{array}\right.$,设y=(-x-1)★(x-1),则不等式y>0的解为(  )
A.x<1B.-1<x<1C.x>-1D.x<-1或x>1

分析 根据题意得出关于x的不等式,求出x的取值范围即可.

解答 解:∵a★b=$\left\{\begin{array}{l}{a(a≥0)}\\{b(a<0)}\end{array}\right.$,设y=(-x-1)★(x-1),y>0,
∴-x-1>0或x-1>0,解得x<-1或x>1.
故选D.

点评 本题考查的是解一元一次不等式组,熟知不等式的基本性质是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网