题目内容

12.如图,已知一块四边形草地ABCD,其中∠A=45°,∠B=∠D=90°,AB=20m,CD=10m,求这块草地的面积.

分析 分别延长AD,BC交于点E,所求四边形ABCD的面积=S△ABE-S△CED.由∠A=45°,∠B=∠D=90°,可得△ABE和△CDE都是等腰直角三角形,然后求出△ABE和△CDE的面积即可求解.

解答 解:分别延长AD,BC交于点E.如图所示,

∵∠A=45°,∠B=∠D=90°,
∴∠DCE=∠DEB=∠A=45°,
∴AB=BE,CD=DE,
∵AB=20,CD=10,
∴BE=20,DE=10,
∵S△ABE=$\frac{1}{2}$AB•BE=200,S△CDE=$\frac{1}{2}$CD•DE=50,
∴四边形ABCD的面积=S△ABE-S△CDE=200-50=150m2
即这块草地的面积为:150m2

点评 本题考查了等腰直角三角形的性质,解题的关键是:通过作辅助线,构造新的直角三角形,利用四边形ABCD的面积=S△ABE-S△CED来求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网