题目内容
【题目】如图所示,在ABCD中,AE:EB=1:2.
(1)求△AEF与△CDF的周长比;
(2)如果S△AEF=6cm2,求S△CDF和S△ADF.
![]()
【答案】(1)1:3;(2)S△CDF=54 cm2,S△ADF=18cm2.
【解析】
(1)由题易证△AEF∽△CDF,由相似三角形的性质:周长之比等于相似比即可求出△AEF与△CDF的周长的比;
(2)由(1)可知△AEF∽△CDF,由相似三角形的性质:面积之比等于相似比的平方即可求出S△CDF,再根据三角形面积关系求出S△ADF即可.
解:(1)∵AE:EB=1:2,
∴AE:AB=1:3,
∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∴△AEF∽△CDF
∴C△AEF:C△CDF=EF:DF=AE:CD=AE:AB=1:3,
即△AEF与△CDF的周长比为1:3;
(2)∵△AEF∽△CDF,
∴S△AEF:S△CDF=(AE:CD)2,
即6:S△CDF=(1:3)2
∴S△CDF=6×9=54(cm2),
,
∴S△ADF=3×6=18(cm2).
练习册系列答案
相关题目