题目内容

如图,在平行四边形ABCD中,M是CD的中点,AB=2BC,BM=a,AM=b,则CD的长为(  )
A、
a
2
+b
B、a+
b
2
C、
ab
D、
a2+b2
考点:平行四边形的性质
专题:
分析:首先利用平行四边形的性质和已知条件证明△MAB为直角三角形,再利用勾股定理即可求出CD的长.
解答:解:∵M为CD中点,
∴CM=DM=
1
2
CD=
1
2
AB=BC=AD,
∴∠DAM=∠DMA,∠CBM=∠CMB,
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠C+∠D=180°,
∴∠C=2∠DMA,∠D=2∠CMB,
∴∠DMA+∠CMB=
1
2
(∠C+∠D)=90°,
∴∠AMB=180°-(∠DMA+∠CMB)=90°
即△MAB为直角三角形,
∵BM=a,AM=b,
∴CD=AB=
MA2+MB2
=
a2+b2

故选D.
点评:本题考查了平行四边形的性质、等腰三角形的判定和性质以及直角三角形的判定和性质、勾股定理的运用,题目设计较好,综合性较强.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网