题目内容

如图,AB是半圆的直径,点D是弧AC的中点,∠ABC=50°,则∠DAB的度数是
 
考点:圆周角定理,圆心角、弧、弦的关系
专题:
分析:连结BD,由于点D是AC弧的中点,即弧CD=弧AD,根据圆周角定理得∠ABD=∠CBD,则∠ABD=25°,再根据直径所对的圆周角为直角得到∠ADB=90°,然后利用三角形内角和定理可计算出∠DAB的度数.
解答:解:连结BD,如图,
∵点D是
AC
的中点,即弧CD=弧AD,
∴∠ABD=∠CBD,
而∠ABC=50°,
∴∠ABD=
1
2
×50°=25°,
∵AB是半圆的直径,
∴∠ADB=90°,
∴∠DAB=90°-25°=65°.
故答案为65°.
点评:本题考查了圆周角定理及其推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角为直角.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网