题目内容
按要求解答下列问题:
(1)分别按下列要求作出经过平移后的图形
①把三角形ABC向右平移3格.
②把第①题所得图形向上平移4格.
(2)经(1)中二次平移后所得的图形,能通过三角形ABC一次平移得到吗?如果你认为可以,描述这个平移过程.
(3)如图:直线l1,l2表示一条河的两岸,且l1∥l2,现要在河上建一座桥.桥建在何处才能使从村庄A经过河到村庄B的路程最短?画出示意图,并用平移的原理说明理由.

(1)分别按下列要求作出经过平移后的图形
①把三角形ABC向右平移3格.
②把第①题所得图形向上平移4格.
(2)经(1)中二次平移后所得的图形,能通过三角形ABC一次平移得到吗?如果你认为可以,描述这个平移过程.
(3)如图:直线l1,l2表示一条河的两岸,且l1∥l2,现要在河上建一座桥.桥建在何处才能使从村庄A经过河到村庄B的路程最短?画出示意图,并用平移的原理说明理由.
考点:作图—应用与设计作图,利用平移设计图案
专题:
分析:(1)根据图形平移的性质画出平移后的图形即可;
(2)根据平移前后的图形特点即可得出结论.
(3)先确定AA′=CD,且AA′∥CD,连接BA′,与河岸的交点就是点C,过点C作CD垂直河岸,交另一河岸于点D,CD就是所求的桥的位置.
(2)根据平移前后的图形特点即可得出结论.
(3)先确定AA′=CD,且AA′∥CD,连接BA′,与河岸的交点就是点C,过点C作CD垂直河岸,交另一河岸于点D,CD就是所求的桥的位置.
解答:解:(1)如图,

(2)由图可知,将△ABC沿直线AA″的方向平移线段AA″的长即可.
(3)先确定AA′=CD,且AA′∥CD,连接BA′,与河岸的交点就是点C,过点C作CD垂直河岸,交另一河岸于点D,CD就是所求的桥的位置.如图(3)
根据“两点之间线段最短”,A′B最短,即AD+BC最短.

(2)由图可知,将△ABC沿直线AA″的方向平移线段AA″的长即可.
(3)先确定AA′=CD,且AA′∥CD,连接BA′,与河岸的交点就是点C,过点C作CD垂直河岸,交另一河岸于点D,CD就是所求的桥的位置.如图(3)
根据“两点之间线段最短”,A′B最短,即AD+BC最短.
点评:本题考查的是作图-平移变换,熟知图形平移不变性的性质是解答此题的关键.
练习册系列答案
相关题目
抛物线y=(x-3)2+5的开口方向,对称轴,顶点坐标分别是( )
| A、开口向上;x=-3;(-3,5) |
| B、开口向上;x=3;(3,5) |
| C、开口向下;x=3;(-3,-5) |
| D、开口向下;x=-3;(3,-5) |
下列运算正确的是( )
A、
| ||
| B、(a+b)2=a2+b2 | ||
| C、x6÷x3=x2 | ||
D、
|