题目内容

如图,⊙I是△ABC的内切圆,与AB、BC、CA分别相切于点D、E、F,∠DEF=50°,求∠A的度数为(  )
A、50°B、80°
C、100°D、60°
考点:三角形的内切圆与内心
专题:计算题
分析:连结ID、IF,如图,先根据圆周角定理得到∠DIF=2∠DEF=100°,再根据切线的性质得ID⊥AB,IF⊥AC,则∠ADI=∠AFI=90°,然后根据四边形内角和计算∠A的度数.
解答:解:连结ID、IF,如图,
∵∠DEF=50°,
∵∠DIF=2∠DEF=100°,
∵⊙I是△ABC的内切圆,与AB、CA分别相切于点D、F,
∴ID⊥AB,IF⊥AC,
∴∠ADI=∠AFI=90°,
∴∠A+∠DIF=180°,
∴∠A=180°-100°=80°.
故选B.
点评:本题考查了三角形的内切圆与内心:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网