题目内容

1.如图,在等边△ABC内有一点D,AD=5,BD=6,CD=4,将△ABD绕A点逆时针旋转,使AB与AC重合,点D旋转至点E,求∠CDE的余弦值.

分析 先根据等边三角形的性质得AB=AC,∠BAC=60°,再根据旋转的性质得AD=AE=5,∠DAE=∠BNAC=60°,CE=BD=6,于是可判断△ADE为等边三角形,得到DE=AD=5;过E点作EH⊥CD于H,如图,设DH=x,则CH=4-x,利用勾股定理得到52-x2=62-(4-x)2,解得x=$\frac{5}{8}$,然后根据余弦的定义求解.

解答 解:∵△ABC为等边三角形,
∴AB=AC,∠BAC=60°,
∵△ABD绕A点逆时针旋转得△ACE,
∴AD=AE=5,∠DAE=∠BNAC=60°,CE=BD=6,
∴△ADE为等边三角形,
∴DE=AD=5,
过E点作EH⊥CD于H,如图,设DH=x,则CH=4-x,
在Rt△DHE中,EH2=52-x2
在Rt△CHE中,EH2=62-(4-x)2
∴52-x2=62-(4-x)2,解得x=$\frac{5}{8}$,
∴DH=$\frac{5}{8}$,
在Rt△EDH中,cos∠HDE=$\frac{DH}{DE}$=$\frac{\frac{5}{8}}{5}$=$\frac{1}{8}$,
即∠CDE的余弦值为$\frac{1}{8}$.

点评 本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的性质和解直角三角形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网