题目内容

17.完成证明,说明理由.
已知:如图,点D在BC边上,DE、AB交于点F,AC∥DE,∠1=∠2,∠3=∠4.
求证:AE∥BC.
证明:∵AC∥DE(已知),
∴∠4=∠FAC(两直线平行,同位角相等 )
∵∠3=∠4(已知),
∴∠3=∠FAC(等量代换 )
∵∠1=∠2(已知),
∴∠1+∠FAD=∠2+∠FAD(等式的性质)
即∠FAC=∠EAD,
∴∠3=∠EAD.
∴AE∥BC(内错角相等,两直线平行 )

分析 首先根据平行线的性质可得∠4=∠FAC,然后可得∠3=∠FAC,再证明∠FAC=∠EAD,从而可得∠3=∠EAD,根据平行线的判定可得AE∥BC.

解答 解:∵AC∥DE(已知),
∴∠4=∠FAC(两直线平行,同位角相等)
∵∠3=∠4(已知),
∴∠3=∠FAC(等量代换)
∵∠1=∠2(已知),
∴∠1+∠FAD=∠2+∠FAD(等式的性质)
即∠FAC=∠EAD,
∴∠3=∠EAD.
∴AE∥BC(内错角相等,两直线平行 ).
故答案为:∠FAC;两直线平行,同位角相等;∠FAC;等量代换;等式的性质;∠EAD;内错角相等,两直线平行.

点评 此题主要考查了平行线的判定和性质,关键是掌握两直线平行,同位角相等;内错角相等,两直线平行.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网