题目内容

6.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交$\widehat{AB}$于点E,以点C为圆心,OA的长为直径作半圆交OE于点D.若OA=4,则图中阴影部分的面积为$\frac{5π}{3}$-2$\sqrt{3}$.

分析 连接OE,根据CE⊥OA且OA=4可知OC=2,故cos∠EOC=$\frac{OC}{OE}$=$\frac{1}{2}$,由此可得出∠COE的度数,进而得出∠BOE的度数,根据S阴影=S扇形AOB-S扇形ACD-S扇形BOE-S△COE即可得出结论.

解答 解:连接OE,
∵C为OA的中点,CE⊥OA且OA=4,
∴OC=2,
∴cos∠EOC=$\frac{OC}{OE}$=$\frac{1}{2}$,CE=$\sqrt{{4}^{2}-{2}^{2}}$=2$\sqrt{3}$,
∴∠COE=60°.
∵∠AOB=90°,
∴∠BOE=30°,
∴S阴影=S扇形AOB-S扇形ACD-S扇形BOE-S△COE
=$\frac{90π×{4}^{2}}{360}$-$\frac{90π×{2}^{2}}{360}$-$\frac{30π×{4}^{2}}{360}$-$\frac{1}{2}$×2×2$\sqrt{3}$
=4π-π-$\frac{4π}{3}$-2$\sqrt{3}$
=$\frac{5π}{3}$-2$\sqrt{3}$.
故答案为:$\frac{5π}{3}$-2$\sqrt{3}$.

点评 本题考查的是扇形面积的计算,根据题意作出辅助线,构造出直角三角形,利用锐角三角函数的定义求出∠COE的度数是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网