题目内容

3.已知:四边形OABC是菱形,以O为圆心作⊙O,与BC相切于点D,交OA于E,交OC于F,连接OD,DF.
(1)求证:AB是⊙O的切线;
(2)连接EF交OD于点G,若∠C=45°,求证:GF2=DG•OE.

分析 (1)过O作OH⊥AB,由菱形的性质可求得OH=OD,由切线的性质可知OD为圆O的半径,可得OH为圆O的半径,可证得结论;
(2)由条件可证明△DGF∽△DFO,再利用相似三角形的性质可证得结论.

解答 证明:
(1)如图,过O作OH⊥AB,

∵四边形OABC为菱形,
∴AB=BC,
∵BC为⊙O的切线,
∴OD⊥BC,且OD为⊙O的半径,
∴AB•OH=BC•OD,
∴OH=OD,
∴AB为⊙O的切线;
(2)由(1)可知OD⊥CB,
∴AO⊥DO,
∴∠AOD=90°,
∴∠DFO=$\frac{1}{2}$∠AOD=45°,
∵∠C=45°,且∠ODC=90°,
∴∠DOF=45°,
在△OGF中,∠DGF为△OGF的外角,
∴∠DGF=∠DOF+∠GFO=45°+∠GFO,
∵∠DFO=∠DFG+∠GFO=45°+∠GFO,
∴∠DGF=∠DFO,且∠GDF=∠FDO,
∴△DGF∽△DFO,
∴$\frac{DG}{DF}$=$\frac{GF}{OF}$,即DF•GF=DG•OF,
∵OF=OD=OE,
∴DF=GF,
∴GF2=DG•OE.

点评 本题主要考查切线的判定和性质及相似三角形的判定,掌握切线的判定方法和相似三角形的判定方法是解题的关键,注意等积法的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网