题目内容

2.如图1、图2、图3中,点E、D分别是正△ABC、正四边形ABCM、正五边形ABCMN中以C点为顶点的一边延长线和另一边反向延长线上的点,且△ABE与△BCD能互相重合,BD延长线交AE于点F.
(1)求图1中,∠AFB的度数;
(2)图2中,∠AFB的度数为90°,图3中,∠AFB的度数为108°.

分析 (1)由全等三角形的性质可得出∠D=∠E,由对顶角相等结合三角形内角和定理即可得出∠BFE=∠BCD,再根据邻补角互补即可得出∠AFB=∠ACB,结合等边三角形内角的度数即可得出结论;
(2)结合(1)即可得出:∠AFB=∠BCM,结合多边形内角和定理以及正多边形的性质即可得出结论.

解答 解:(1)∵△ABE与△BCD能互相重合,
∴∠D=∠E,
∵∠DBC=∠EBF,
∴∠BFE=180°-∠E-∠EBF=180°-∠D-∠B=∠BCD.
∵∠BCD+∠ACB=180°,∠ACB=60°,∠AFB+∠BFE=180°,
∴∠AFB=∠ACB=60°.
(2)同理可得出:∠AFB=∠BCM,
∵四边形ABCD为正方形,五边形ABCMN为正五边形,
∴图2中∠BCM=90°,图3中∠BCM=108°.
故答案为:90°;108°.

点评 本题考查了全等三角形的性质、正多边形的性质、三角形内角和定理、邻补角以及多边形内角与外角,解题的关键是:(1)通过全等三角形的性质结合角的计算找出∠AFB=∠ACB;(2)根据多边形内角和定理以及正多边形的性质找出每个内角的度数.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网