题目内容
14.下列运算中正确的是( )| A. | 2a-3a=-1 | B. | 2a•3a=6a | C. | (2a)3=6a3 | D. | 2a4÷a2=2a2 |
分析 计算出各个选项中式子的值即可得到哪个选项是正确的,本题得以解决.
解答 解:∵2a-3a=-a,故选项A错误;
∵2a•3a=6a2,故选项B错误;
∵(2a)3=8a3,故选项C错误;
∵2a4÷a2=2a2,故选项D正确;
故选D.
点评 本题考查整式的混合运算,解题的关键是明确整式的混合运算的计算方法.
练习册系列答案
相关题目
9.关于x的不等式组$\left\{\begin{array}{l}{x-a>0}\\{x-1<0}\end{array}\right.$有解,则a的取值范围是( )
| A. | a≤1 | B. | a<1 | C. | a<0 | D. | a≤0 |
3.某市在城中村改造中,需要种植A、B两种不同的树苗共3000棵,经招标,承包商以15万元的报价中标承包了这项工程,根据调查及相关资料表明,A、B两种树苗的成本价及成活率如表:
设种植A种树苗x棵,承包商获得的利润为y元.
(1)求y与x之间的函数关系式;
(2)政府要求栽植这批树苗的成活率不低于93%,承包商应如何选种树苗才能获得最大利润?最大利润是多少?
(3)在达到(2)中政府的要求并获得最大利润的前提下,承包商用绿化队的40人种植这两种树苗,已知每人每天可种植A种树苗6棵或B种树苗3棵,如何分配人数才能使种植A、B两种树苗同时完工.
| 品种 | 购买价(元/棵) | 成活率 |
| A | 28 | 90% |
| B | 40 | 95% |
(1)求y与x之间的函数关系式;
(2)政府要求栽植这批树苗的成活率不低于93%,承包商应如何选种树苗才能获得最大利润?最大利润是多少?
(3)在达到(2)中政府的要求并获得最大利润的前提下,承包商用绿化队的40人种植这两种树苗,已知每人每天可种植A种树苗6棵或B种树苗3棵,如何分配人数才能使种植A、B两种树苗同时完工.