题目内容

20.如图,在菱形ABCD中,AD=6,∠ABC=120°,E是BC的中点,P为对角线AC上的一个动点,则PE+PB的最小值为3$\sqrt{3}$.

分析 连接BD,DE,则DE的长即为PE+PB的最小值,再根据菱形ABCD中,∠ABC=120°得出∠BCD的度数,进而判断出△BCD是等边三角形,故△CDE是直角三角形,根据勾股定理即可得出DE的长.

解答 解:连接BD,DE,
∵四边形ABCD是菱形,
∴B、D关于直线AC对称,
∴DE的长即为PE+PB的最小值,
∵ABC=120°,
∴∠BCD=60°,
∴△BCD是等边三角形,
∵E是BC的中点,
∴DE⊥BC,CE=$\frac{1}{2}$BC=$\frac{1}{2}$×6=3,
∴DE=$\sqrt{C{D}^{2}-C{E}^{2}}$=3$\sqrt{3}$.
故答案为:3$\sqrt{3}$.

点评 本题考查的是轴对称-最短路线问题,熟知菱形的性质及两点直线线段最短是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网