ÌâÄ¿ÄÚÈÝ
17£®£¨1£©ÈôÆ½ÃæÖ±½Ç×ø±êϵÖÐÓÐÁ½µãD£¨5£¬2£©ºÍE£¨-1£¬-4£©£¬ÔòÏß¶ÎDEµÄÖеãFµÄ×ø±êΪ£¨2£¬-1£©£»
£¨2£©Èçͼ£¬µãMÊÇË«ÇúÏßy=$\frac{8}{x}$ÔÚµÚÒ»ÏóÏÞÄڵķÖÖ§ÉϵÄÒ»µã£¬µãKµÄ×ø±êΪ£¨6£¬0£©£¬Ïß¶ÎMKµÄÖеãNÒ²ÔÚÕâÒ»·ÖÖ§ÉÏ£¬ÔòµãMµÄ×ø±êΪ£¨2£¬4£©£¬µãNµÄ×ø±êΪ£¨4£¬2£©£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬ÉèµãPΪxÖáÉϵÄÒ»µã£¬µãQΪֱÏßy=-2xÉÏÒ»µã£¬ÈôÒÔM¡¢N¡¢P¡¢QΪ¶¥µãµÄËıßÐÎÊÇÆ½ÐÐËıßÐΣ¬ÊÔÇóµãPºÍµãQµÄ×ø±ê£®
·ÖÎö £¨1£©Ö±½Ó¸ù¾ÝÖеã×ø±ê¹«Ê½¼´¿ÉµÃ³ö½áÂÛ£»
£¨2£©ÉèM£¨x£¬$\frac{8}{x}$£©£¬¸ù¾ÝÖеã×ø±ê¹«Ê½ÓÃx±íʾ³öNµã×ø±ê£¬ÔÙ¸ù¾ÝµãNÔÚË«ÇúÏßÉϿɵóöxµÄÖµ£¬½ø¶øµÃ³öM¡¢NÁ½µãµÄ×ø±ê£»
£¨3£©ÉèP£¨a£¬0£©£¬Q£¨x£¬-2x£©£¬ÔÙ·ÖMNÊÇÆ½ÐÐËıßÐεĶԽÇÏßÓëMPÊÇÆ½ÐÐËıßÐεĶԽÇÏßÁ½ÖÖÇé¿ö½øÐÐÌÖÂÛ£®
½â´ð ½â£º£¨1£©¡ßD£¨5£¬2£©ºÍE£¨-1£¬-4£©£¬
¡àÏß¶ÎDEµÄÖеãFµÄ×ø±êΪ£¨$\frac{5-1}{2}$£¬$\frac{2-4}{2}$£©£¬¼´F£¨2£¬-1£©£®
¹Ê´ð°¸Îª£¨2£¬-1£©£»
£¨2£©¡ßµãMÔÚË«ÇúÏßy=$\frac{8}{x}$ÉÏ£¬
¡àÉèM£¨x£¬$\frac{8}{x}$£©£®
¡ßµãKµÄ×ø±êΪ£¨6£¬0£©£¬µãNÊÇÏß¶ÎMKµÄÖе㣬
¡àN£¨$\frac{x+6}{2}$£¬$\frac{4}{x}$£©£®
¡ßµãNÒ²ÔÚË«ÇúÏßy=$\frac{8}{x}$ÉÏ£¬
¡à$\frac{4}{x}$=$\frac{8}{\frac{x+6}{2}}$£¬½âµÃx=2£¬
¡àM£¨2£¬4£©£¬N£¨4£¬2£©£®
¹Ê´ð°¸Îª£º£¨2£¬4£©£¬£¨4£¬2£©£»
£¨3£©ÉèP£¨a£¬0£©£¬Q£¨x£¬-2x£©£¬
µ±MNÊÇÆ½ÐÐËıßÐεĶԽÇÏßʱ£¬
¡ßM£¨2£¬4£©£¬N£¨4£¬2£©£¬
¡à2+4=a+x£¬4+2=-2x£¬½âµÃx=-3£¬a=9£¬
¡àP£¨9£¬0£©£¬Q£¨-3£¬6£©£»
µ±MPÊÇÆ½ÐÐËıßÐεĶԽÇÏßʱ£¬
2+a=4+x£¬4=-2x+2£¬½âµÃx=-1£¬a=1£¬
¡àP£¨1£¬0£©£¬Q£¨-1£¬2£©£®
µ±NPΪ¶Ô½ÇÏßʱ£¬Ò×ÖªP£¨-1£¬0£©£¬Q£¨1£¬-2£©
×ÛÉÏËùÊö£¬µãPºÍµãQµÄ×ø±êΪP£¨9£¬0£©£¬Q£¨-3£¬6£©»òP£¨1£¬0£©£¬Q£¨-1£¬2£©»ò£¨-1£¬0£©£¬Q£¨1£¬-2£©£®
µãÆÀ ±¾Ì⿼²éµÄÊÇ·´±ÈÀýº¯Êý×ÛºÏÌâ£¬Éæ¼°µ½·´±ÈÀýº¯ÊýͼÏóÉϵãµÄ×ø±êÌØµã¼°Æ½ÐÐËıßÐεÄÅж¨µÈ֪ʶ£¬ÔÚ½â´ð£¨3£©Ê±Òª×¢Òâ½øÐзÖÀàÌÖÂÛ£®