题目内容

如图,在平行四边形ABCD中,E,F分别为边AB,CD的中点,连接DE,BF,BD.
(1)求证:△ADE≌△CBF.
(2)请你添加一个条件:
 
,使四边形BFDE是菱形,并证明你的结论.
考点:菱形的判定,全等三角形的判定与性质,平行四边形的性质
专题:
分析:(1)根据平行四边形的对边相等的性质可以得到AD=BC,AB=CD,又点E、F是AB、CD中点,所以AE=CF,然后利用边角边即可证明两三角形全等;
(2)连接EF,可以证明四边形AEFD是平行四边形,所以AD∥EF,又AD⊥BD,所以BD⊥EF,根据菱形的判定可以得到四边形是菱形.
解答:证明:(1)在?ABCD中,AD=BC,AB=CD,∠A=∠C,
∵E、F分别为边AB、CD的中点,
∴AE=CF,
在△ADE和△CBF中,
AD=BC
∠A=∠C
AE=CF

∴△ADE≌△CBF(SAS);

(2)添加AD⊥BD.
理由如下:连接EF,在?ABCD中,E、F分别为边AB、CD的中点,
∴DF平行且等于AE,
∴四边形AEFD是平行四边形,
∴EF∥AD,
∵AD⊥BD,
∴EF⊥BD,
又∵四边形BFDE是平行四边形,
∴四边形BFDE是菱形.
点评:本题主要考查了平行四边形的性质,全等三角形的判定以及菱形的判定,利用好E、F是中点是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网