题目内容
【题目】如图,
的半径为
,点
、
、
、
在
上,且四边形
是矩形,点
是劣弧
上一动点,
、
分别与
相交于点
、点
.当
且
时,
的长度为( )
![]()
A.
B.
C.
D. ![]()
【答案】A
【解析】
作辅助线,构建矩形的对角线,根据等边对等角得∠ABP=∠APB,由同弧所对的圆周角相等可得∠ACB=∠ACP,进而得到AF=FC.根据矩形的四个角都是直角得∠ABC=90°,AE=EF=FD得FC=2FD,∠DCF=30°,得出∠ACB=30°,求出BC的长,AD的长,再三等分即可.
连接AC、BD.
∵PA=AB,∴∠ABP=∠APB.
∵∠ABP=∠ACP,∠APB=∠ACB,∴∠ACB=∠ACP.
∵AD∥BC,∴∠DAC=∠ACB,∴∠ACP=∠DAC,∴AF=FC.
∵AE=EF=FD,设FD=x,则FC=AF=2x.
∵四边形ABCD为矩形,∴AD=BC,∠ABC=∠ADC=90°,∴AC为⊙O的直径.
在Rt△DFC中,FC=2FD,∴∠DCF=30°,∴∠ACB=∠ACP=30°.
∵⊙O的半径为1,∴AC=2,∴AB=1,BC=
,∴AD=BC=
.
∵AE=EF=FD,∴AE=
.
【题目】在初中阶段的函数学习中,我们经历了“确定函数的表达式——利用函数图象研究其性质——运用函数解决问题”的学习过程. 在画函数图象时,我们通过描点、平移、对称的方法画出了所学的函数图象. 同时,我们也学习了绝对值的意义
,结合上面经历的学习过程,现在来解决下面的问题
在函数
中,自变量
的取值范围是全体实数,下表是
与
的几组对应值:
|
| 0 | 1 | 2 | 3 | ||
y | … | 0 | 1 | 2 | 3 | 2 | … |
(1)根据表格填写:
_______.
(2)化简函数解析式:
当
时,
_______;
当
时,
______.
(3)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象并解决以下问题;
①该函数的最大值为_______.
②若
为该函数图象上不同的两点,则
________.
③根据图象可得关于
的方程
的解为_______.
【题目】如图,在
中,
是
的中点,
是边
上一动点,连结
,取
的中点
,连结
.小梦根据学习函数的经验,对
的面积与
的长度之间的关系进行了探究:
![]()
(1)设
的长度为
,
的面积
,通过取
边上的不同位置的点
,经分析和计算,得到了
与
的几组值,如下表:
| 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| 3 |
| 1 | 0 |
| 2 | 3 |
根据上表可知,
______,
______.
(2)在平面直角坐标系
中,画出(1)中所确定的函数的图象.
![]()
(3)在(1)的条件下,令
的面积为
.
①用
的代数式表示
.
②结合函数图象.解决问题:当
时,
的取值范围为______.