题目内容

13.如图,在矩形ABCD中,AB=8,BC=12,点E为BC的中点.连接AE,将△ABE沿AE折叠,点B落在点F处,连接CF,现将△CEF绕点E顺时针旋转α角(其中0°≤α≤180°)得到△EC1F1,旋转过程中,直线C1F1分别交射线EC、射线AE于点M、N,当EM=EN时,则CM=6-$\frac{12\sqrt{5}}{5}$.

分析 如图作EK⊥FC,EJ⊥MN垂足分别为K、J,延长JE交AB于G,作GH⊥AE垂足为H,根据条件可以求出EK=EJ=$\frac{24}{5}$,BG=3,EG=3$\sqrt{5}$,利用△EBG∽△EJM求出EM,即可解决问题.

解答 解:如图作EK⊥FC,EJ⊥MN垂足分别为K、J,延长JE交AB于G,作GH⊥AE垂足为H.
∵四边形ABCD是矩形,AB=8,BC=12,BE=EC
∴∠B=90°,BE=6,AE=$\sqrt{A{B}^{2}+B{E}^{2}}$=10,
∵△AEF是△AEB翻折,
∴∠B=∠AFE=90°,∠BAE=∠EAF,
∴∠BAF+∠BEF=180°,
∵∠BEF+∠FEC=180°,
∴∠FEC=∠BAF,
∵EF=EC,EK⊥FC,
∴∠FEK=∠CEK,
∴∠BAE=∠CEK,
∵∠ABE=∠EKF,
∴△ABE∽△EKF,
∴$\frac{AE}{EF}=\frac{AB}{EK}$,即$\frac{10}{6}=\frac{8}{EK}$,
∴EK=$\frac{24}{5}$,
∵△EC1F1是由△EFC旋转,EK⊥FC,EJ⊥F1C1
∴EJ=EK=$\frac{24}{5}$,
∵EM=EN,EJ⊥MN,
∴∠MEJ=∠NEJ,
∵∠GEB=∠MEJ,∠GEH=∠NEJ,
∴∠GEB=∠GEH,∵GB⊥BE,GH⊥HE,
∴GB=GH,设GB=GH=x,
在RT△AGH中,由AG2=GH2+AH2,得(8-x)2=x2+42
∴x=3,
∴BG=GH=3,AG=5,
∴EG=$\sqrt{B{G}^{2}+B{E}^{2}}$=,3$\sqrt{5}$,
∵∠BEG=∠MEJ,∠B=∠EJM=90°,
∴△EBG∽△EJM,
∴$\frac{EG}{EM}=\frac{BE}{EJ}$,
∴$\frac{3\sqrt{5}}{EM}=\frac{6}{\frac{24}{5}}$,
∴EM=$\frac{12\sqrt{5}}{5}$,
∴CM=EC-EM=6-$\frac{12\sqrt{5}}{5}$.
故答案为6-$\frac{12\sqrt{5}}{5}$.

点评 本题考查了翻折和旋转的有关性质、等腰三角形的性质、角平分线的性质、相似三角形的判定和性质、勾股定理等知识,构造三角形相似是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网