题目内容

20.如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=26cm,点P从点A出发,以1cm/s的速度向点D运动;点Q从点C同时出发,以3cm/s的速度向点B运动.规定其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t(s).
(1)当t为何值时,PQ∥CD?
(2)当t为何值时,PQ=CD?

分析 (1)由当PQ∥CD时,四边形PQCD为平行四边形,可得方程24-t=3t,解此方程即可求得答案;
(2)根据PQ=CD,一种情况是:四边形PQCD为平行四边形,可得方程24-t=3t,一种情况是:四边形PQCD为等腰梯形,可求得当QC-PD=QC-EF=QF+EC=2CE,即3t-(24-t)=4时,四边形PQCD为等腰梯形,解此方程即可求得答案.

解答 解:根据题意得:PA=t,CQ=3t,则PD=AD-PA=24-t.
(1)∵AD∥BC,
即PQ∥CD,
∴当PD=CQ时,四边形PQCD为平行四边形,
即24-t=3t,
解得:t=6,
即当t=6时,PQ∥CD;
(2)若PQ=DC,分两种情况:
①PQ=DC,由(1)可知,t=6,
②PD≠CQ,则四边形PDCQ是等腰梯形,则有QC=PD+2(BC-AD),
可得方程:3t=24-t+4,
解得:t=7.

点评 此题考查了直角梯形的性质、平行四边形的判定、等腰梯形的判定以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想与方程思想的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网