题目内容

如图,△ABC中,AD是中线,∠BAD=∠B+∠C,tan∠ABC=,则tan∠BAD=________.

【答案】

【解析】延长AD到E,使AD=DE,CF ,

,

, ,所以

是等腰三角形,s

设EM= x,DE=11,MC=10,

,

,

x=,

tan∠BAD=.

故答案为.

点睛:倍长中线法构造全等三角形,如图,AD是中线,令AD=DE,则ADC全等EBD.

【题型】填空题
【结束】
21

先化简,再求值: ÷(-a+2),其中a=2sin60°+3tan45°.

﹣. 【解析】试题分析:先因式分解,再通分,约分化简,代入数值求值. 试题解析: 【解析】 原式= ÷(-) =÷=, ∵a=2sin60°+3tan45°=2×+3×1=+3 ∴原式==﹣.
练习册系列答案
相关题目

某文教店老板到批发市场选购A,B两种品牌的绘图工具套装,每套A品牌套装进价比B品牌每套套装进价多2.5元,已知用200元购进A种套装的数量是用75元购进B种套装数量的2倍.

(1)求A,B两种品牌套装每套进价分别为多少元?

(2)若A品牌套装每套售价为13元,B品牌套装每套售价为9.5元,店老板决定,购进B品牌的数量比购进A品牌的数量的2倍还多4套,两种工具套装全部售出后,要使总的获利超过120元,则最少购进A品牌工具套装多少套?

【答案】(1)A种品牌套装每套进价为10元,B种品牌套装每套进价为7.5元;(2)最少购进A品牌工具套装17套.

【解析】试题分析:(1)利用两种套装的套数作为等量关系列方程求解.(2)利用总获利大于等于120,解不等式.

试题解析:

(1)【解析】
设B种品牌套装每套进价为x元,则A种品牌套装每套进价为(x+2.5)元.

根据题意得: =2×

解得:x=7.5,

经检验,x=7.5为分式方程的解,

∴x+2.5=10.

答:A种品牌套装每套进价为10元,B种品牌套装每套进价为7.5元.

(2)【解析】
设购进A品牌工具套装a套,则购进B品牌工具套装(2a+4)套,

根据题意得:(13﹣10)a+(9.5﹣7.5)(2a+4)>120,

解得:a>16,

∵a为正整数,

∴a取最小值17.

答:最少购进A品牌工具套装17套.

点睛:分式方程应用题:一设,一般题里有两个有关联的未知量,先设出一个未知量,并找出两个未知量的联系;二列,找等量关系,列方程,这个时候应该注意的是和差分倍关系:三解,正确解分式方程;四验,应用题要双检验;五答,应用题要写答.

【题型】解答题
【结束】
26

四边形ABCD内接于⊙O,点E为AD上一点,连接AC,CB,∠B=∠AEC.

(1)如图1,求证:CE=CD;

(2)如图2,若∠B+∠CAE=120°,∠ACD=2∠BAC,求∠BAD的度数;

(3)如图3,在(2)的条件下,延长CE交⊙O于点G,若tan∠BAC= ,EG=2,求AE的长.

(1)见解析;(2)60°;(3)7. 【解析】试题分析:(1)利用圆的内接四边形定理得到∠CED=∠CDE. (2) 作CH⊥DE于H, 设∠ECH=α,由(1)CE=CD,用α表示∠CAE,∠BAC,而∠BAD=∠BAC+∠CAE.(3)连接AG,作GN⊥AC,AM⊥EG,先证明∠CAG=∠BAC,设NG=5m,可得AN=11m,利用直角AGM, AEM,勾股定理可以算出m的值并求...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网