题目内容
在四个完全相同的小球上分别写上1,2,3,4四个数字,然后装入一个不透明的口袋内搅匀,从口袋内取出一个球记下数字后作为点P的横坐标x,放回袋中搅匀,然后再从袋中取出一个球记下数字后作为点P的纵坐标y,则点P(x,y)落在直线y=-x+5上的概率是 .
考点:列表法与树状图法,一次函数图象上点的坐标特征
专题:分类讨论
分析:首先根据题意画出表格,然后由表格求得所有等可能的结果与数字x、y满足y=-x+5的情况,再利用概率公式求解即可求得答案.
解答:解:列表得:
∵共有16种等可能的结果,数字x、y满足y=-x+5的有(1,4),(2,3),(3,2),(4,1),
∴数字x、y满足y-x+5的概率为:
.
故答案为:
.
| 1 | 2 | 3 | 4 | |
| 1 | (1,1) | (1,2) | (1,3) | (1,4) |
| 2 | (2,1) | (2,2) | (2,3) | (2,4) |
| 3 | (3,1) | (3,2) | (3,3) | (3,4) |
| 4 | (4,1) | (4,2) | (4,3) | (4,4) |
∴数字x、y满足y-x+5的概率为:
| 1 |
| 4 |
故答案为:
| 1 |
| 4 |
点评:此题考查的是用列表法或树状图法求概率与不等式的性质.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.
练习册系列答案
相关题目