题目内容

10.当-1<x<2时,化简$\sqrt{{x}^{2}+2x+1}$+$\sqrt{{x}^{2}-6x+9}$=4.

分析 首先把根号里的式子写成完全平方式,然后根据条件进行化简.

解答 解:当-1<x<2时,$\sqrt{{x}^{2}+2x+1}$+$\sqrt{{x}^{2}-6x+9}$=$\sqrt{(x+1)^{2}}+\sqrt{((x-3)^{2}}$
=x+1+3-x=4.
故答案为4.

点评 本题主要考查了二次根式的性质和化简的知识点,熟练掌握二次根式的性质是解答本题的关键,本题难度不大.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网