题目内容

若抛物线y=kx2-2x+l与x轴有两个交点,则k的取值范围是____.

k<1,且k≠0 【解析】【解析】 ∵y=kx2﹣2x+1为二次函数,∴k≠0. ∵抛物线y=kx2﹣2x+1的图象与x轴有两个交点,∴△>0,即(﹣2)2-4k>0. 解得:k<1,∴k的取值范围是k<1且k≠0. 故答案为:k<1且k≠0.
练习册系列答案
相关题目

下列图形中,不一定是轴对称图形的是( )

A. 等腰三角形 B. 等边三角形 C. 直角三角形 D. 等腰直角三角形

C 【解析】A.等腰三角形是轴对称图形,不符合题意; B.等边三角形是轴对称图形,不符合题意; C.直角三角形不一定是轴对称图形,符合题意; D.等腰直角三角形是轴对称图形,不符合题意. 故选:C.

如图,点A1、A2、A3、…、An在抛物线y=x2图象上,点B1、B2、B3、…、Bn在y轴上,若△A1B0B1、△A2B1B2、…、△AnBn-1Bn都为等腰直角三角形(点B0是坐标原点),则△A2015B2014B2015的腰长=____

2015 【解析】作A1C⊥y轴,A2E⊥y轴,垂足分别为C、E. ∵△A1BOB1、△A2B1B2都是等腰直角三角形 ∴B1C=B0C=DB0=A1D,B2E=B1E=A2E ∴设A1(a,a)将其代入解析式y=x2得: ∴a=a2 解得:a=0(不符合题意)或a=1,由勾股定理得:A1B0= 同理可以求得:A2B1=2 A3B2=3 A4B...

在体育测试时,初三的一名高个子男生推铅球,已知铅球所经过的路线是某二次函数图象的一部分(如图),若这个男生出手处A点的坐标为(0,2),铅球路线的最高处B点的坐标为B(6,5).

(1)求这个二次函数的表达式;

(2)该男生把铅球推出去多远?(精确到0.01米).

(1)y= (x-6)2+5;(2)该男生把铅球推出约13.75米 【解析】试题分析:(1)根据顶点坐标B(6,5)可设函数关系式为y=a(x-6)2+5,再把A(0,2)代入即可求得结果; (2)把y=0代入求得图象与x轴的交点坐标,即可得到结果. (1)设y=a(x-6)2+5, 则由A(0,2)得2=a(0-6)2+5,解得a=. 故y= (x-6)2+5; ...

函数的图象如图,那么关于x的方程的根的情况是( )

A. 有两个不相等的实数根 B. 有两个异号实数根

C. 有两个相等实数根 D. 无实数根

C 【解析】【解析】 将函数y=ax2+bx+c的图象往下平移3个单位即可得出函数y=ax2+bx+c﹣3的图象.∵函数y=ax2+bx+c的图象开口向下,顶点纵坐标为3,∴函数y=ax2+bx+c﹣3的图象与x轴只有一个交点,∴方程ax2+bx+c﹣3=0有两个相等的实数根. 故答案为:方程ax2+bx+c﹣3=0有两个相等的实数根.

某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:

(1)求出y与x之间的函数关系式;

(2)写出每天的利润W与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?

(1)y=-x+180;(2)售价定为140元/件时,每天最大利润W=1600元. 【解析】(1)设y与x之间的函数关系式为y=kx+b(k≠0),根据所给函数图象列出关于kb的关系式,求出k、b的值即可; (2)把每天的利润W与销售单价x之间的函数关系式化为二次函数顶点式的形式,由此关系式即可得出结论. 【解析】 (1)设y与x之间的函数关系式为y=kx+b(k≠0),由所给...

如图,在平面直角坐标系中,抛物线经过平移得到抛物线,其对称轴与两段抛物线所围成的阴影部分的面积为

A. 2 B. 4 C. 8 D. 16

B 【解析】试题解析:过点C作CA⊥y, ∵抛物线y=x2-2x=(x2-4x)=(x2-4x+4)-2=(x-2)2-2, ∴顶点坐标为C(2,-2), 对称轴与两段抛物线所围成的阴影部分的面积为:2×2=4, 故选B.

若y=(m2-3m)x是二次函数,则m=____.

-1 【解析】由二次函数的定义可知自变量的最高指数为2,且系数不等于0,可得m2-3m≠0,且;解得m=-1或m=3;当m=3时,m2-3m=0;最终可求得m=-1. 故答案为:-1.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网