题目内容

某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:

(1)求出y与x之间的函数关系式;

(2)写出每天的利润W与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?

(1)y=-x+180;(2)售价定为140元/件时,每天最大利润W=1600元. 【解析】(1)设y与x之间的函数关系式为y=kx+b(k≠0),根据所给函数图象列出关于kb的关系式,求出k、b的值即可; (2)把每天的利润W与销售单价x之间的函数关系式化为二次函数顶点式的形式,由此关系式即可得出结论. 【解析】 (1)设y与x之间的函数关系式为y=kx+b(k≠0),由所给...
练习册系列答案
相关题目

在△ABC中,∠B=40°,∠C=70°,则△ABC中是           三角形

等腰 【解析】本题考查的是三角形的分类。∠C=180°-40°-70°=70°,所以∠A=∠C=70°故为等腰三角形。

如图,二次函数y= -x2-2x的图象与x轴交于点A、O,在抛物线上有一点P,满足

S△AOP=3,则点P的坐标是(  )

A. (-3,-3) B. (1,-3) C. (-3,-3)或(-3,1) D. (-3,-3)或(1,-3)

D 【解析】分析:根据抛物线的解析式,即可确定点A的坐标,由于OA是定长,根据△AOP的面积即可确定P点纵坐标的绝对值,将其代入抛物线的解析式中,即可求得P点的坐标. 解答:【解析】 抛物线的解析式中,令y=0,得:-x2-2x=0,解得x=0,x=-2; ∴A(-2,0),OA=2; ∵S△AOP=OA?|yP|=3,∴|yP|=3; 当P点纵坐标为3时,-x2-...

若抛物线y=kx2-2x+l与x轴有两个交点,则k的取值范围是____.

k<1,且k≠0 【解析】【解析】 ∵y=kx2﹣2x+1为二次函数,∴k≠0. ∵抛物线y=kx2﹣2x+1的图象与x轴有两个交点,∴△>0,即(﹣2)2-4k>0. 解得:k<1,∴k的取值范围是k<1且k≠0. 故答案为:k<1且k≠0.

在二次函数y=ax2+bx+c中,若a与c异号,则其图象与x轴的交点个数为( )

A. 2个 B. 1个 C. 0个 D. 不能确定

A 【解析】【解析】 ∵a与c异号,∴ac<0,∴△=>0,∴二次函数图象与x轴的交点个数为2.故选A.

如图,对称轴平行于y轴的抛物线与x轴交于(1,0)、(3,0)两点,则它的对称轴为____________________.

直线x=2 【解析】试题分析:当两点到对称轴距离相等时,则所对应的函数值相等,则二次函数的对称轴为:x==2.

观察下列各式: ;……,请你将猜想到的规律用自然数的式子表示出来_________.

【解析】观察所给的式子,根据所给式子揭示的规律,即可得一般的规律: .

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网