题目内容

5.如图,两条直线相交只有1个交点,三条直线相交最多有3个交点,四条直线相交最多有6个交点,五条直线相交最多有10个交点,六条直线相交最多有15个交点,n条直线相交最多有$\frac{n(n-1)}{2}$个交点.

分析 根据图形相邻两个图形的交点个数的差为从2开始的连续整数,然后列式计算即可得解;
根据图形列出交点个数的算式,然后计算即可得解.

解答 解:三条直线交点最多为1+2=3个,
四条直线交点最多为3+3=6个,
五条直线交点最多为6+4=10个,
六条直线交点最多为10+5=15个;
n条直线交点最多为1+2+3+…+(n-1)=$\frac{n(n-1)}{2}$.
故答案为:15;$\frac{n(n-1)}{2}$.

点评 本题考查了直线、射线、线段,发现规律题,观察出相邻两个图形的交点个数的差为连续整数是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网