题目内容

14.如图,点A、C、B、D在同一条直线上,AC=BD,AM∥CN,BM∥DN,那么AM与CN相等吗?请你说明理由.

分析 AM=CN,首先根据AC=BD可得AB=CD,由AM∥CN,BM∥DN,得到∠A=∠NCD,∠MBA=∠D,证明△AMB≌△CND,即可解答.

解答 解:AM=CN,
理由:∵AC=BD,
∴AC+CB=DB+CB,
即:AB=CD,
∵AM∥CN,BM∥DN,
∴∠A=∠NCD,∠MBA=∠D,
在△AMB和△CND中,
$\left\{\begin{array}{l}{∠A=∠NCD}\\{AB=CD}\\{∠MBA=∠D}\end{array}\right.$
∴△AMB≌△CND(ASA),
∴AM=CN.

点评 此题主要考查了三角形全等的判定方法和性质,以及平行线的判定,关键是掌握全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网