题目内容

10.如图,在△ABC中,AB=5,BC=3,AC=4,点E,F分别是AB,BC的中点.以下结论错误的是(  )
A.△ABC是直角三角形B.AF是△ABC的中位线
C.EF是△ABC的中位线D.△BEF的周长为6

分析 根据勾股定理等逆定理、三角形的中位线的性质,一一判断即可.

解答 解:A、正确.∵AB=5,BC=3,AC=4,
∴AB2=BC2+AC2
∴△ACB是直角三角形,故正确.
B、错误.AF是△ABC的中线,不是中位线.
C、正确.∵点E,F分别是AB,BC的中点,
∴EF是△ABC的中位线,故正确.
D、正确.易知EF=$\frac{1}{2}$AC=2,EB=$\frac{1}{2}$AB=$\frac{5}{2}$,FB=$\frac{1}{2}$BC=$\frac{3}{2}$,
∴△EFB的周长=6,故正确,
故选B.

点评 本题考查三角形的中位线定理、勾股定理的逆定理等知识,解题的关键是灵活运用所学知识解决问题,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网