题目内容

15.如图,四边形ABCD中,AD∥BC,BC=5,∠BAD的平分线AE交BC于点E,CE=2,则线段AB的长为3.

分析 根据角平分线定义求出∠DAE=∠BAE,根据平行线的性质得出∠DAE=∠AEB,推出∠BAE=∠AEB,根据等腰三角形的判定得出AB=BE,即可得出答案.

解答 解:∵∠BAD的平分线AE交BC于点E,
∴∠DAE=∠BAE,
∵AD∥BC,
∴∠DAE=∠AEB,
∴∠BAE=∠AEB,
∴AB=BE,
∵BC=5,CE=2,
∴AB=BE=5-2=3,
故答案为:3.

点评 本题考查了角平分线定义,平行线的性质,等腰三角形的性质和判定的应用,能求出AB=BE是解此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网