ÌâÄ¿ÄÚÈÝ
2£®£¨1£©Çóc£®b£¨ÓÃtµÄ´úÊýʽ±íʾ£©£º
£¨2£©Å×ÎïÏßy=-x2+bx+cÓëÖ±Ïßx=1ºÍx=5·Ö±ð½»ÓÚM¡¢NÁ½µã£¬µ±t£¾1ʱ£¬
¢ÙÔÚµãPµÄÔ˶¯¹ý³ÌÖУ¬ÄãÈÏΪsin¡ÏMPOµÄ´óСÊÇ·ñ»á±ä»¯£¿Èô±ä»¯£¬ËµÃ÷ÀíÓÉ£»Èô²»±ä£¬Çó³ösin¡ÏMPOµÄÖµ£º
¢ÚÊÇ·ñ´æÔÚÕâÑùµÄ/Öµ£¬Ê¹µÃMP¡ÎON£¿Èç¹û´æÔÚ£¬Çó³ötÖµ£ºÈç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£º
£¨3£©ºá¡¢×Ý×ø±ê¶¼ÊÇÕûÊýµÄµã½Ð×öÕûµã£¬ÈôÅ×ÎïÏßÔÚµãO£¬PÖ®¼äµÄ²¿·ÖÓëÏß¶ÎOPËùΧ³ÉµÄÇøÓòÄÚ£¨°üÀ¨±ß½ç£©Ç¡ÓÐ5¸öÕûµã£¬½áºÏº¯ÊýµÄͼÏó£¬Ö±½Óд³ötµÄȡֵ·¶Î§£®
·ÖÎö £¨1£©½«µãO£¨0£¬0£©£¬µãP£¨t£¬0´úÈëÅ×ÎïÏߵĽâÎöʽ£¬È»ºó½â·½³Ì×é¼´¿É£»
£¨2£©¢Ùµ±x=1ʱ£¬¿ÉÖ¤Ã÷AM=AP£¬´Ó¶øµÃµ½¡ÏPAM=45¡ã£»¢ÚҪʹMP¡ÎON£¬ÐèÂú×ã¡ÏPON=45¡ã£¬¼´N£¨5£¬-5£©£¬È»ºó½«µãNµÄ×ø±ê´úÈëÅ×ÎïÏߵĽâÎöʽ¿ÉµÃµ½¹ØÓÚtµÄ·½³Ì£¬´Ó¶ø¿ÉÇóµÃtµÄÖµ£»
£¨3£©ÓÉ£¨2£©¿ÉÖªAM=AP£¬¹Ê´Ëµ±2£¼t£¼3ʱ£¬1£¼MµÄ×Ý×ø±ê£¼2£¬ÒªÊ¹Å×ÎïÏßÔÚµãO£¬PÖ®¼äµÄ²¿·ÖÓëÏß¶ÎOPËùΧ³ÉµÄÇøÓòÄÚ£¨°üÀ¨±ß½ç£©Ç¡ÓÐ5¸öÕûµã£¬ÔòÖ»ÐèÒªµ±x=2ʱ£¬1¡Üy£¼2¼´¿É£®
½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉÖª£¬µãO£¨0£¬0£©£¬µãP£¨t£¬0£©£¬
¡ßÅ×ÎïÏßy=-x2+bx+c¾¹ýµãOºÍµãP£¬
¡à$\left\{\begin{array}{l}{c=0}\\{-{t}^{2}+bt=0}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{b=t}\\{c=0}\end{array}\right.$£¬
¡ày=-x2+tx£»
£¨2£©µ±t£¾1ʱ£¬
¢Ùsin¡ÏMPOµÄ´óС²»»á±ä»¯£»
µ±x=1ʱ£¬y=t-1£¬¼´M£¨1£¬t-1£©£¬¼´AM=t-1£¬AP=t-1£¬¼´AM=AP£¬¡ÏPAM=45¡ã£¬
¡àsin¡ÏMPO=sin45¡ã=$\frac{\sqrt{2}}{2}$£¬ÊǶ¨Öµ£®
¢Ú´æÔÚ£»
ÀíÓÉ£ºÈçͼ1£º¡ÏOPM=45¡ã£¬ÒªÊ¹MP¡ÎON£¬ÐèÂú×ã¡ÏPON=45¡ã£¬¼´N£¨5£¬-5£©£¬´úÈëy=-x2+txµÃ-25+5t=-5£®
½âµÃt=4£®![]()
£¨3£©Èçͼ2Ëùʾ£º![]()
ÓÉ£¨2£©¿ÉÖªAM=AP£®
¡àµ±2£¼t£¼3ʱ£¬1£¼MµÄ×Ý×ø±ê£¼2£®
¡àҪʹÅ×ÎïÏßÔÚµãO£¬PÖ®¼äµÄ²¿·ÖÓëÏß¶ÎOPËùΧ³ÉµÄÇøÓòÄÚ£¨°üÀ¨±ß½ç£©Ç¡ÓÐ5¸öÕûµã£¬ÔòÖ»ÐèÒªµ±x=2ʱ£¬1¡Üy£¼2¼´¿É£®
¡à$\left\{\begin{array}{l}{-4+2t¡Ý1}\\{-4+2t£¼2}\end{array}\right.$£¬½âµÃ£º$\frac{5}{2}$¡Üt£¼3£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éµÄÊǶþ´Îº¯ÊýµÄ×ÛºÏÓ¦Ó㬽â´ð±¾ÌâÖ÷ÒªÓ¦ÓÃÁË´ý¶¨ÏµÊý·¨Çó¶þ´Îº¯ÊýµÄ½âÎöʽ£¬µÈÑüÖ±½ÇÈý½ÇÐεÄÅж¨¡¢ÌØÊâÈñ½ÇÈý½Çº¯ÊýÖµ£¬Ò»ÔªÒ»´Î²»µÈʽ×éµÄÓ¦Ó㬵õ½¡ÏMPA=45¡ãÊǽâ´ðÎÊÌ⣨2£©µÄ¹Ø¼ü£¬ÒÀ¾ÝÇ¡ºÃÓÐ5¸öÕûµãÁгö²»µÈʽ×éÊǽâ´ðÎÊÌ⣨3£©µÄ¹Ø¼ü£®
| A£® | 3£¨x+1£©2=2£¨x-1£© | B£® | $\frac{1}{{x}^{2}}$+$\frac{1}{x}$-2=0 | C£® | ax2+bx+c=0 | D£® | x2+2x=x2 |