题目内容

19.如图,在矩形ABCD中,对角线AC、BD相交于点O,过点A作BD的垂线,垂足为E,若∠EAD=3∠BAE,则∠AOE=45°.

分析 根据矩形性质求出OA=OB,∠BAD=90°,求出∠BAE=22.5°,∠DAE=67.5°,再求出∠ABO的度数以及∠OAB的度数,得出∠OAE的度数,即可得出结果.

解答 解:∵四边形ABCD是矩形,
∴∠BAD=90°,
∵∠DAE=3∠BAE,∠BAE+∠DAE=∠BAD,
∴∠BAE=22.5°,∠DAE=67.5°,
∵AE⊥BD,
∴∠AEB=90°,
∴∠ABO=∠AEB-∠BAE=90°-22.5°=67.5°,
∵四边形ABCD是矩形,
∴AC=BD,OA=$\frac{1}{2}$AC,OB=$\frac{1}{2}$BD,
∴OA=OB,
∴∠OAB=∠ABO=67.5°,
∴∠OAE=67.5°-22.5°=45°,
∴∠AOE=90°-∠OAE=45°;
故答案为:45°.

点评 本题考查了矩形性质、等腰三角形性质、三角形的内角和定理;熟练掌握矩形的性质,弄清各个角之间的数量关系是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网